Year	Name	Institution	Brief Description
2021	Corey Adams	Argonne National Laboratory	"Construction of a Background Free, Normal- Ordering Neutrinoless Double Beta Decay Demonstrator"
			Demonstrator" The experimental quest for the neutrino's true nature, a search dating back to the earliest days of nuclear and particle physics, is now harnessing experiments, machines, and detectors of high precision and massive scale. Observation of a hypothesized unbelievably rare occurrence – a neutrinoless double beta decay of a nucleus would indicate that a neutrino is its own antiparticle, and would help to answer fundamental questions about why there is more matter than antimatter in the Universe. Current and planned experiments will only be able to explore certain theories of neutrinoless double beta decay due to coincidental but rare background (i.e., non- signal) data coming from detectors. To fully resolve whether a nucleus can undergo this as- of-yet undetected reaction will require new breakthroughs in detector technology that can reach the elusive "normal ordering" neutrinoless double beta decay regime by eliminating background events. This research program will unify and incorporate the latest developments in nuclear physics R&D into a novel detector capable of demonstrating background-free searches for neutrinoless double beta decay. Notably, this will include sensors capable of detecting, at the single-ion level, Barium++ ions as they are produced by double beta decay in Xenon. Additionally, this detector will synthesize direct ultraviolet light collection and fast optical cameras to enable high resolution, 3D imaging of neutrinoless double beta decay vents. Achieving background-free neutrinoless double beta decay searches will enable the Office of Science's high-priority search for neutrinoless double beta decay to reach unprecedented levels of sensitivity.
2021	weima Aviia Coronado	Laboratory	the Weak r-process"

			Where do heavy elements—those heavier than iron, such as gold and europium—come from? For decades, this question has been the subject of intense debate among physicists. The recent first- ever observation of two binary neutron stars colliding and merging suggests that these mergers are responsible for the production of heavy elements via the rapid neutron capture process (r-process). However, observations of ultra-metal-poor stars show that this is not the whole story. Rather, there is strong evidence that there is another r-process site that produces the lightest heavy elements—from strontium to silver—attributable to the r-process. Neutrino- driven winds that follow core-collapse supernova explosions are possible candidates for the production of the weak r-process elements, but unfortunately, none of the relevant reaction rates necessary to constrain astrophysical models are experimentally known. Obtaining direct measurements of these reactions is experimentally challenging because they require unstable neutron-rich beams, which are usually produced at low intensities. The goal of this project is to develop innovative methods of measuring reaction rates important for the production of weak r-process elements, building on a technique recently developed at Argonne National Laboratory's tandem linac accelerator system (ATLAS) for the direct measurement of nuclear reactions using neutron-rich beams. With the development of a powerful active-target detector—a time- projection chamber with three-dimensional tracking and high-rate capabilities—and the implementation of machine learning techniques for data analysis, this research will reduce or remove some of the most important nuclear physics uncertainties associated with the weak r-process and will substantially improve our understanding of nucleosynthesis from neutrino-driven winds in core-collapse
2021	Heather Crawford	Lawrence Berkeley National	"In Beam Gamma-Ray Spectroscopy at
		Laboratory	the Limits of FRIB"

			An area of great discovery potential at the Facility for Rare Isotope Beams (FRIB) will be at the neutron driplines, the upper mass limit of existence for each isotope on the periodic table. In this region, the imbalance of neutrons and protons in the nucleus results in the evolution of proton and neutron orbitals, the emergence of collective structure, and the potential for changes in nuclear properties due to the proximity of unbound configurations. The study of nuclei close to the neutron dripline is particularly interesting; these nuclei play a strong role in isotope production in stars and their structure also informs nuclear theory. Establishing how and when large neutron-to- proton ratios in a nucleus require new or modified theoretical tools is a major question in nuclear physics that remains largely unanswered. To move the science forward, data as close to the reachable limits of experiment are essential, requiring targeted measurements and new experimental capabilities. The goal of this research is the study of nuclear structure at the limits of existence through a program of strategic measurements at FRIB. Measurements will focus on the most exotic magnesium, calcium and iron nuclei. In parallel, a thick liquid hydrogen target coupled with charged particle detectors for reaction vertex reconstruction will be developed and deployed to maximize sensitivity for spectroscopy measurements at FRIB
2021	Matthew Durham	Los Alamos National Laboratory	"Exotic Probes of Dense Nuclear Matter" Energetic collisions of nuclei produce a unique phase of matter, called the quark-gluon plasma, where normal particles like protons and neutrons melt down into their constituent parts. As this plasma expands and cools, clusters of three quarks can freeze back into more familiar particles, while larger groups of four, five, or more quarks can coalesce into exotic particles that are not well understood. The rate at which exotic particles form is dependent on the properties of the plasma such as its temperature and density, and also

			on the structure of the exotic particles themselves. The LHCb experiment at the Large Hadron Collider is uniquely well suited to measure these exotic particles in a wide range of nuclear environments. This project will use LHCb to measure exotic particles produced in both collider and fixed-target collisions, where they will be exposed to different conditions. These measurements will provide new information on the mechanisms by which quarks combine into particles and the fundamentally allowed configurations of quarks that make up visible matter. In addition, these data will be used to guide projections for future studies of exotic particle interactions at the forthcoming Electron-Ion Collider.
2021	Mengjia Gaowei	Brookhaven National	"Cathode R&D for High Intensity Electron
		Laboratory	Source in Support of EIC"
			The future Electron-Ion Collider (EIC) is a unique high-energy, high-luminosity polarized collider that will be one of the most challenging and exciting accelerator complexes ever built. The EIC will be a discovery machine that collides electrons with protons and nuclei to produce snapshots of those particles' internal structure. It will provide answers to the mysteries of matter related to our understanding the origin of mass, structure, and binding of the atomic nuclei. To maintain a high luminosity in the EIC, it is desirable to cool the hadron beams to improve the collision rate. Electron cooling is a promising technique to achieve this goal. This technique requires an electron beams with low emittance, high average current and high bunch charge. Multi- alkali antimonide photocathodes have proven to be highly effective in meeting these challenges. This research is aiming at growing nearly perfect crystals of alkali antimonides with assistance of a variety of characterization tools and evaluate the performance of the bulk grown crystals as photocathodes. Further, the effort will test these cathodes alongside traditionally grown cathodes for high current operation, both to evaluate performance and

			to characterize failure mechanisms. These
			efforts are expected to lead to a dramatic
			improvement of the material quantum
			α
			production of esthodos with high operational
			production of cathodes with high operational
			QE and lifetimes at least twice that of
			traditional cathodes. Furthermore, this
			research will explore and evaluate the various
			protective mechanisms brought up by the
			community in recent years, including 2-D
			material encapsulation and nano-structure
			enhancement, under high current operation
			conditions. The success of this work will yield
			the ideal photocathode material with better QE
			and longer lifetime for high current
			applications for EIC. It has the potential to
			create both a scientific breakthrough in
			understanding the properties of photocathode
			materials, and a technological breakthrough in
			extending the operational lifetime of cathodes
			for electron coolers. Ultimately this will
			improve luminosity and decrease downtime for
			the flagship machines in nuclear physics.
2021	Andrew Javich	University of California.	"Quantum Logic Spectroscopy of Radioactive
2021		Santa Barbara	molecules for Probing Fundamental
2021		Santa Barbara	molecules for Probing Fundamental Symmetries"
2021		Santa Barbara	molecules for Probing Fundamental Symmetries"
2021		Santa Barbara	molecules for Probing Fundamental Symmetries"
2021		Santa Barbara	The heavy elements at the bottom of the periodic
2021		Santa Barbara	The heavy elements at the bottom of the periodic hold much promise and unique opportunities for
2021		Santa Barbara	The heavy elements at the bottom of the periodic hold much promise and unique opportunities for basic science and technology. But, the radioactivity of these elements presents
2021		Santa Barbara	The heavy elements at the bottom of the periodic hold much promise and unique opportunities for basic science and technology. But, the radioactivity of these elements presents challenges. This project aims to use one such
2021		Santa Barbara	The heavy elements at the bottom of the periodic hold much promise and unique opportunities for basic science and technology. But, the radioactivity of these elements presents challenges. This project aims to use one such element, radium, as the cornerstone for studying
2021		Santa Barbara	The heavy elements at the bottom of the periodic hold much promise and unique opportunities for basic science and technology. But, the radioactivity of these elements presents challenges. This project aims to use one such element, radium, as the cornerstone for studying and controlling radioactive moloculos made with
2021		Santa Barbara	The heavy elements at the bottom of the periodic hold much promise and unique opportunities for basic science and technology. But, the radioactivity of these elements presents challenges. This project aims to use one such element, radium, as the cornerstone for studying and controlling radioactive molecules made with
2021		Santa Barbara	The heavy elements at the bottom of the periodic hold much promise and unique opportunities for basic science and technology. But, the radioactivity of these elements presents challenges. This project aims to use one such element, radium, as the cornerstone for studying and controlling radioactive molecules made with bottom-row elements with both high efficiency
2021		Santa Barbara	The heavy elements at the bottom of the periodic hold much promise and unique opportunities for basic science and technology. But, the radioactivity of these elements presents challenges. This project aims to use one such element, radium, as the cornerstone for studying and controlling radioactive molecules made with bottom-row elements with both high efficiency and high precision. Trapped radium ions will be
2021		Santa Barbara	The heavy elements at the bottom of the periodic hold much promise and unique opportunities for basic science and technology. But, the radioactivity of these elements presents challenges. This project aims to use one such element, radium, as the cornerstone for studying and controlling radioactive molecules made with bottom-row elements with both high efficiency and high precision. Trapped radium ions will be used to synthesize trapped radium-based
2021		Santa Barbara	The heavy elements at the bottom of the periodic hold much promise and unique opportunities for basic science and technology. But, the radioactivity of these elements presents challenges. This project aims to use one such element, radium, as the cornerstone for studying and controlling radioactive molecules made with bottom-row elements with both high efficiency and high precision. Trapped radium ions will be used to synthesize trapped radium-based molecules and study their properties with
2021		Santa Barbara	The heavy elements at the bottom of the periodic hold much promise and unique opportunities for basic science and technology. But, the radioactivity of these elements presents challenges. This project aims to use one such element, radium, as the cornerstone for studying and controlling radioactive molecules made with bottom-row elements with both high efficiency and high precision. Trapped radium ions will be used to synthesize trapped radium-based molecules and study their properties with quantum logic spectroscopy, a quantum
2021		Santa Barbara	The heavy elements at the bottom of the periodic hold much promise and unique opportunities for basic science and technology. But, the radioactivity of these elements presents challenges. This project aims to use one such element, radium, as the cornerstone for studying and controlling radioactive molecules made with bottom-row elements with both high efficiency and high precision. Trapped radium ions will be used to synthesize trapped radium-based molecules and study their properties with quantum logic spectroscopy, a quantum information technique that was originally
		Santa Barbara	The heavy elements at the bottom of the periodic hold much promise and unique opportunities for basic science and technology. But, the radioactivity of these elements presents challenges. This project aims to use one such element, radium, as the cornerstone for studying and controlling radioactive molecules made with bottom-row elements with both high efficiency and high precision. Trapped radium ions will be used to synthesize trapped radium-based molecules and study their properties with quantum logic spectroscopy, a quantum information technique that was originally developed for optical atomic clocks that has
		Santa Barbara	The heavy elements at the bottom of the periodic hold much promise and unique opportunities for basic science and technology. But, the radioactivity of these elements presents challenges. This project aims to use one such element, radium, as the cornerstone for studying and controlling radioactive molecules made with bottom-row elements with both high efficiency and high precision. Trapped radium ions will be used to synthesize trapped radium-based molecules and study their properties with quantum logic spectroscopy, a quantum information technique that was originally developed for optical atomic clocks that has recently been applied to molecules. With radium-
		Santa Barbara	The heavy elements at the bottom of the periodic hold much promise and unique opportunities for basic science and technology. But, the radioactivity of these elements presents challenges. This project aims to use one such element, radium, as the cornerstone for studying and controlling radioactive molecules made with bottom-row elements with both high efficiency and high precision. Trapped radium ions will be used to synthesize trapped radium-based molecules and study their properties with quantum logic spectroscopy, a quantum information technique that was originally developed for optical atomic clocks that has recently been applied to molecules. With radium- based molecules the project will also be able to
		Santa Barbara	The heavy elements at the bottom of the periodic hold much promise and unique opportunities for basic science and technology. But, the radioactivity of these elements presents challenges. This project aims to use one such element, radium, as the cornerstone for studying and controlling radioactive molecules made with bottom-row elements with both high efficiency and high precision. Trapped radium ions will be used to synthesize trapped radium-based molecules and study their properties with quantum logic spectroscopy, a quantum information technique that was originally developed for optical atomic clocks that has recently been applied to molecules. With radium- based molecules the project will also be able to study properties of the radium nucleus and set
		Santa Barbara	The heavy elements at the bottom of the periodic hold much promise and unique opportunities for basic science and technology. But, the radioactivity of these elements presents challenges. This project aims to use one such element, radium, as the cornerstone for studying and controlling radioactive molecules made with bottom-row elements with both high efficiency and high precision. Trapped radium ions will be used to synthesize trapped radium-based molecules and study their properties with quantum logic spectroscopy, a quantum information technique that was originally developed for optical atomic clocks that has recently been applied to molecules. With radium- based molecules the project will also be able to study properties of the radium nucleus and set the stage for using radioactive molecules to
		Santa Barbara	The heavy elements at the bottom of the periodic hold much promise and unique opportunities for basic science and technology. But, the radioactivity of these elements presents challenges. This project aims to use one such element, radium, as the cornerstone for studying and controlling radioactive molecules made with bottom-row elements with both high efficiency and high precision. Trapped radium ions will be used to synthesize trapped radium-based molecules and study their properties with quantum logic spectroscopy, a quantum information technique that was originally developed for optical atomic clocks that has recently been applied to molecules. With radium- based molecules the project will also be able to study properties of the radium nucleus and set the stage for using radioactive molecules to address profound questions centered on time
		Santa Barbara	The heavy elements at the bottom of the periodic hold much promise and unique opportunities for basic science and technology. But, the radioactivity of these elements presents challenges. This project aims to use one such element, radium, as the cornerstone for studying and controlling radioactive molecules made with bottom-row elements with both high efficiency and high precision. Trapped radium ions will be used to synthesize trapped radium-based molecules and study their properties with quantum logic spectroscopy, a quantum information technique that was originally developed for optical atomic clocks that has recently been applied to molecules. With radium- based molecules the project will also be able to study properties of the radium nucleus and set the stage for using radioactive molecules to address profound questions centered on time symmetry violation, such as why is the Universe

			rare radionuclides have massive octupole shape deformations, e.g. radium- 225 and protactinium- 229, which makes them exceptionally sensitive to time symmetry violating or equivalently charge parity violating physics. When these special nuclei are incorporated into a molecule, they can gain a further thousand-fold sensitivity enhancement due to the molecule's intense electric field. The combined nuclear and molecular sensitivities may be exploited to search for a tiny time symmetry violation signal using just a single trapped molecule.
2021	Ben Loer	Pacific Northwest National	"Improving Coherence Times for Quantum
		Laboratory	Devices Beyond the Next Decade"
			Emerging quantum information technologies have the potential to revolutionize many areas in science and computing. It has recently been demonstrated that ionizing radiation contributes to errors in superconducting qubits. If these devices continue their current rate of improvement, ordinary levels of background radiation could become the dominant source of errors within the next decade. The goal of this project is to develop methods to reduce radiation impacts on superconducting quantum devices. The project has three thrusts. First, the response of qubits to a variety of tailored radiation sources will be measured to better understand and model how radiation interacts in these devices at the microscopic level. With this knowledge, new devices may be developed with intrinsically reduced sensitivity to radiation. Second, new types of cryogenic radiation sensors will be developed to better measure the qubit's environment in real time, including a first-of-its-kind hybrid device combining superconducting qubits and microcalorimeter radiation sensors on a single chip. Finally, developing new methods in quantum computing to integrate classical sensor data and detect radiation-induced conditions will enable more accurate quantum calculations with the application of sensor-assisted quantum fault mitigation (Sensor-QFM) concepts. The results of this project will provide a crucial stepping- stone on the path to realizing the full potential of superconducting quantum technologies.

2021	Maria Piarulli	Washington University	"From Atomic Nuclei to Infinite Nucleonic
			Matter within Chiral Dynamics"
			Emerging quantum information technologies
			have the potential to revolutionize many areas
			The quest to describe classes of phenomena that
			occur in the atomic nucleus lies at the heart of
			nuclear physics. These quantum mechanical
			phenomena play a major role in the birth and
			evolution of the universe, in astrophysical
			environments, in energy production through
			fission and fusion reactions, and in industrial and
			medical applications via use of stable isotopes
			and radioisotopes. Understanding the structure
			and dynamics of nuclei and strongly interacting
			nuclear experimental programs and theoretical
			afforts. The present research will aim to develop
			a clear and coherent nicture in which microscopic
			models accurately describe atomic nuclei while
			simultaneously predicting properties of infinite
			matter, e.g., pure neutron matter, relevant to the
			structure and internal composition of neutron
			stars. It will make use of state-of-the-art
			computational techniques and high-performance
			computing to broaden the applicability of
			variational and Green's function Monte Carlo
			methods, currently limited to bound states with
			mass number A ≤ 12. The results will directly
			address some of the fundamental questions at
			the frontier of nuclear science and will
			complement the US Department of Energy's
			major investments in supporting present and
			future nuclear physics experiments at low-,
			medium-, and high-energy.
2021	Srimoyee Sen	Iowa State University of	"Quantum Materials, Lattice Gauge
		Science and Technology	Theory and QCD"
			The confluence of modern scientific ideas from
			Quantum Chromodynamics (OCD) - the
			fundamental theory of nuclear interactions
			condensed matter physics and particle physics
			has enabled notable discoveries of exotic
			phenomena in extreme astrophysical
			environments as well as in materials in tabletop
			experiments. This project brings together
			seminal ideas from lattice quantum field theory

			(OFT), dense-OCD and topological
			superconductors and insulators the
			interrelations of which in two and higher
			dimensions could reveal nevel phase structures
			of OCD as well as lead to the discovery of new
			augustum materials. Of great surrent interest is
			dualitum materials. Of great current interest is
			of the size as illeges in fault to leagest averations
			of their resilience in fault tolerant quantum
			computing and their ability to exquisitely
			diagnose topological phases of quantum
			materials. Advancing our understanding of
			anyonic excitations in QFT could, in turn,
			address foundational questions in the study of
			the QCD phase diagram and nuclear matter.
2021	Chun Shen	Wayne State University	"Quantitative Characterization of Emerging
			Quark-Gluon Plasma Properties with Dynamical
			Fluctuations and Small Systems"
			High energy collisions of atomic nuclei create
			extreme conditions to study the collective
			property of nuclear matter. Experiments at the
			Relativistic Heavy Ion Collider (RHIC) in the U.S.
			and the Large Hadron Collider (LHC) in Europe
			create a novel state of matter Quark-Gluon
			Plasma (QGP), which exhibits guarks' and gluons'
			degrees of freedom at a temperature exceeding 2
			trillion degrees Kelvin. The OGP behaves like a
			nearly perfect fluid from the many-body effects of
			Quantum Chromodynamics (OCD) This hot and
			dense soup of elementary particles filled our
			universe a few microseconds after the Big Bang as
			the primordial liquid. The emergence of OGP's
			ctrongly coupled nature is studied by varying
			collicion operational system size at PHIC and the
			Consider energy and system size at KHIC and the
			Program at DUIC further probes the OCD matter's
			program at KHIC further probes the QCD matters
			phase structure, searching for the existence and
			location of the first order (liquid- vapor) phase
			boundary between ordinary nuclear matter and
			QGP terminating at a critical point. This project
			aims at elucidating QGP properties by
			understanding the dynamical evolution of
			stochastic fluctuations in relativistic heavy-ion
			collisions from large to small systems. This
			research will provide a quantitative
			characterization of the QGP properties, how it
			ripples, flows, and its phase structure by
			interweaving theoretical many-body nuclear

1	
	physics, high-performance computing, and
	advanced machine learning techniques. The QGP
	viscosity and charge diffusion coefficients control
	how fluctuations of energy, momentum, and
	charge density dissipate in the system. The
	presence of a QCD critical point in a heavy-ion
	collision should lead to enhanced fluctuations and
	strong correlations of conserved densities. The
	out-of-equilibrium dynamics of these small
	ripples under a realistic hydrodynamic flow
	background elucidate the thermal, critical, and
	transport properties of the QGP. A new open-
	source theoretical framework will be developed
	to decode this information from the measured
	multi-particle correlations. This framework
	integrates the state-of-the-art 3D event-by-event
	QGP dynamics and the evolution of generic
	fluctuations. By further combining the theoretical
	framework with advanced statistical analysis,
	reliable phenomenological constraints on the
	QGP properties will be delivered when
	confronting the precision measurements from the
	RHIC BES program. This research will benefit the
	current Beam Energy Scan phase II and upcoming
	SPHENIX programs at RHIC, high luminosity runs
	at LHC, and the future Electron-Ion Collider (EIC)
	and Facility for Antiproton and Ion Research
	(FAIR).