Advanced Photon Source (APS)
Description
The APS, at Argonne National Laboratory, is one of only four third-generation, hard x-ray synchrotron radiation light sources in the world. The 1,104-meter circumference facility—large enough to house a baseball park in its center—includes 34 bending magnets and 34 insertion devices, which has a capacity of at least 68 beamlines for experimental research. Instruments on these beamlines attract researchers to study the structure and properties of materials in a variety of disciplines, including condensed matter physics, materials sciences, chemistry, geosciences, structural biology, medical imaging, and environmental sciences. The high-quality, reliable x-ray beams at the APS have already brought about new discoveries in various scientific fields.
Science
The brightness and energy of x-ray beams are critical properties for research. Higher brightness means more x-rays can be focused onto a smaller, laser-like spot, allowing researchers to gather more data in greater detail in less time. Higher energies allow x-rays to penetrate deeper inside materials to reveal crucial information about a material’s structure and function. The combination of high brightness and high energy allows the observation and imaging—in real time—of fast and ultrafast technologically important processes, including fuel sprays, magnetic switching, and biological processes in living organisms.