
Uncovering the Atomic Mechanism Underpinning Heat Transport in Thermoelectric Materials
Neutrons reveal remarkable atomic behavior in thermoelectric materials for more efficient conversion of heat into electricity.
Neutrons reveal remarkable atomic behavior in thermoelectric materials for more efficient conversion of heat into electricity.
Studies of the nanostructure of a chiral magnet provides insights on controlling magnetic properties for applications in computers and other electronics.
New optics-on-a-chip device paves the way to helping characterize fast chemical, material, and biological processes.
Neutron scattering monitors structures during post-production heat treatment to validate production models.
Unusual filling of different sub-shells due to quantum confinement leads to a stable superatom that is also highly magnetic.
Short and long-range electron transfer compete to determine free-charge yield in organic semiconductors.
Researchers discover key details of how to drive photosynthesis in the shade by studying far-red light acclimation in cyanobacteria.
Neural networks determine the amplitude and phase of X-ray pulses, enabling new, high-resolution quantum studies.
Using two methods is better than one when it comes to observing how solar cells form and improving cell properties.
Scientists capture the short-lived hydroxyl-hydronium pair and the induced dynamic response in ionized liquid water in unprecedented detail.
Novel molecular beam scattering apparatus that uses a liquid flat jet can study chemical reactions at the gas liquid interface of volatile liquids.
Discovery of a short-lived state could lead to faster and more energy-efficient computing devices.