
Morphing Polymer Shape and Motion with Light
Computational modelling shows how the shape and motion in a polymer gel can be controlled solely by light.
Computational modelling shows how the shape and motion in a polymer gel can be controlled solely by light.
Electric fields control growth of “sticky” polymer particles.
Precise, predictable positioning of nanoparticles on a liquid crystal droplet.
Harnessing the spins of electrons in a new way - enabling efficient magnetic switching and holding promise for spintronic devices.
Adding platinum atoms tunes the color of emitted light.
Researchers have invented a new x-ray imaging technique that could reveal key atomic-scale properties in ferroelectric magnetic materials.
Using neutron diffraction, movement of charged atoms arranged as “stripes” was captured for the first time.
A triple point, where three different atomic structures coexist simultaneously, has been uncovered in vanadium dioxide.
Using sulfur-rich, highly ionic compounds as cathodes and electrolytes enables solid-state lithium-sulfur rechargeable batteries.
Electrons can behave as if they are a hundred times heavier than free electrons and superconducting.
Ionic liquids found to behave differently than expected.
The discovery of the first binary magnetic quasicrystals will enable the unraveling of the fundamental relationship between the structure and magnetism in aperiodic materials.