
Stable Nickel-64 Nuclei Take Three Distinct Shapes
Scientists track down coexistence of multiple shapes in the Nickel-64 nucleus: a spherical ground state and elongated and flattened shapes.
Scientists track down coexistence of multiple shapes in the Nickel-64 nucleus: a spherical ground state and elongated and flattened shapes.
New measurements provide insights for geochronology and reactor design.
Data from the first observation of a neutron-star collision combined with input from modern nuclear theory narrow the range of neutron star radii.
A novel terahertz laser achieves the performance goals critical for new applications in sensing and imaging.
An X-ray image taken with a novel X-ray wavefront imager results in high precision measurements of intensity and direction of the X-ray beam.
Crystals grown from layers of atoms arrange themselves on semiconductor surfaces to add new capabilities.
Neutron scattering and isotopic substitution techniques reveal how to block vibrations that could leak heat from a photovoltaic cell.
New experiments demonstrate the correlation of natural radiation, unpaired electrons, and decoherence in superconducting qubit devices.
New lens could generate an ion beam that is both small and fast.
Controlling the knotting of molecular chains offers new ties from polymer fluids to industrial applications.
Scientists find the radioactive nucleus selenium-72 is football-shaped, answering a longstanding question about the nuclear shape of selenium isotopes.
Incorporating sterols in the outer membrane of Yarrowia lipolytica makes it significantly more tolerant of ionic liquids.