PNNL-22342-4

Proudly Operated by Battelle Since 1965

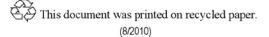
Department of Energy – Office of Science Pacific Northwest National Laboratory Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2015

SF Snyder JM Barnett

May 2016

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

DISCLAIMER


This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service 5301 Shawnee Rd., Alexandria, VA 22312 ph: (800) 553-NTIS (6847) email: <u>orders@ntis.gov</u> orders@ntis.gov Online ordering: http://www.ntis.gov

Department of Energy – Office of Science Pacific Northwest National Laboratory

Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2015

SF Snyder JM Barnett

May 2016

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory Richland, Washington 99352

Summary

The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office has oversight and stewardship duties associated with the Pacific Northwest National Laboratory Marine Sciences Laboratory (MSL), located on Battelle Land-Sequim. The facility has two buildings with the potential to emit low levels of radioactive materials. DOE-SC contracted for exclusive use of its radiological operations effective October 1, 2012.

This report is prepared to document compliance with the Code of Federal Regulation, Title 40, Protection of the Environment, Part 61, *National Emission Standards for Hazardous Air Pollutants*, Subpart H, "National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities" and Washington Administrative Code Chapter 246-247, *Radiation Protection–Air Emissions*. Compliance is indicated by comparing the estimated effective dose equivalent (EDE) to the maximally exposed individual (MEI) with the 10 millirem per year (mrem/yr) U.S. Environmental Protection Agency (EPA) standard. The MSL has only fugitive emissions sources. Despite the fact that the regulations are intended for application to point source emissions, fugitive emissions are included with regard to complying with the EPA standard.

The EDE to the MSL MEI due to routine operations in 2015 was 1.1E-04 mrem (1.1E-06 mSv). No non-routine emissions occurred in 2015. The MSL is in compliance with the federal and state 10 mrem/yr standard.

For further information concerning this report, you may contact Thomas M. McDermott, U.S. Department of Energy, Pacific Northwest Site Office, by telephone at (509) 372 4675 or by e-mail at tom.mcdermott@science.doe.gov.

CERTIFICATION OF PNNL-22342-4

DOE-SC Pacific Northwest National Laboratory Marine Sciences Laboratory Radionuclide Air Emissions Report Calendar Year 2015

I certify under penalty of law that I have personally examined and am familiar with the information submitted herein and, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment. See, 18 U.S.C. 1001. [verbatim from 40 CFR 61, Subpart H, 61.94(b)(9)]

Roger E. Snyder, Manager U.S. Department of Energy Pacific Northwest Site Office

6/10/16

Date

Acronyms and Abbreviations

CFR	Code of Federal Regulations
Ci	curie
CY	calendar year
DOE	U.S. Department of Energy
DOE-SC	U.S. Department of Energy, Office of Science
EDE	effective dose equivalent
EPA	U.S. Environmental Protection Agency
HEPA	high efficiency particulate air (filter)
Major	a radioactive point source having a radiological dose potential of greater than 0.1 mrem/yr EDE, based on emissions that would result if all pollution-control equipment did not exist but facility operations were otherwise normal
MEI	maximally exposed individual
Minor	a radioactive point source having a radiological dose potential of less than or equal to 0.1 mrem/yr EDE, based on emissions that would result if all pollution-control equipment did not exist but facility operations were otherwise normal
mrem	millirem [i.e., 1×10^{-3} rem]
MSL	Pacific Northwest National Laboratory Marine Sciences Laboratory
mSv	millisievert
NESHAP	National Emission Standards for Hazardous Air Pollutants
NOC	Notice of Construction
PNNL	Pacific Northwest National Laboratory
PNSO	Pacific Northwest Site Office
PTE	potential-to-emit
QA	quality assurance
RAEL	Radioactive Air Emissions License
rem	roentgen equivalent man
UDF	unit-release dose factor
WAC	Washington Administrative Code
WDOH	Washington State Department of Health

Contents

Summa	uryi	ii
CERTI	FICATION OF PNNL-22342-4	v
Acrony	ms and Abbreviations	ii
1.0 In	troduction	1
1.	1 Battelle Land-Sequim and MSL Description	1
2.0 R	adionuclide Air Emissions	4
2.	1 Major, Minor, and Fugitive Emissions Points	4
3.0 D	ose Assessment	6
3.	1 Dose Model and Potential Receptors	6
3.	2 Compliance Assessment	7
4.0 Su	applemental Information	9
4.	1 Collective Dose Estimate	9
4.	2 Compliance Status with Subparts Q and T of 40 CFR 61	9
4.	3 Other Supplemental Information1	0
5.0 R	eferences1	1
	dix A List of Radioactive Materials Handled or Potentially Handled, or Authorized for Use	
	MSL in 2015	
Append	dix B COMPLY Unit Dose FactorsB.	1

Figures

Figure 1.1. MSL in Northwestern Washington State	. 1
Figure 1.2. Battelle Land-Sequim and Marine Sciences Laboratory	. 2
Figure 1.3. Building MSL-1	. 3
Figure 1.4. Overhead View of Building MSL-5	. 3

Tables

Table 2.1. 2015 MSL Inventory and Emissions Estimates	5
Table 3.1. COMPLY Input Parameters	6
Table 3.2. Potential MSL MEI Locations	7
Table 3.3. MSL 2015 Radionuclide Emissions and MEI Dose	8
Table 4.1. Populations and Significant U.S. Cities within 50 mi of MSL	9

1.0 Introduction

The Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) is located on Battelle Land-Sequim (PNSO 2013) on the coast of Washington State's Olympic Peninsula (Figure 1.1). The Pacific Northwest Site Office of the U.S. Department of Energy (DOE) Office of Science oversees MSL activities through an exclusive use contract with Battelle Memorial Institute. MSL is DOE's only marine research laboratory.

This radiological air emissions report meets the Washington Department of Health (WDOH) requirements for radiological National Emission Standards for Hazardous Air Pollutants (NESHAP) compliance reporting for the activities at MSL for calendar year (CY) 2015.

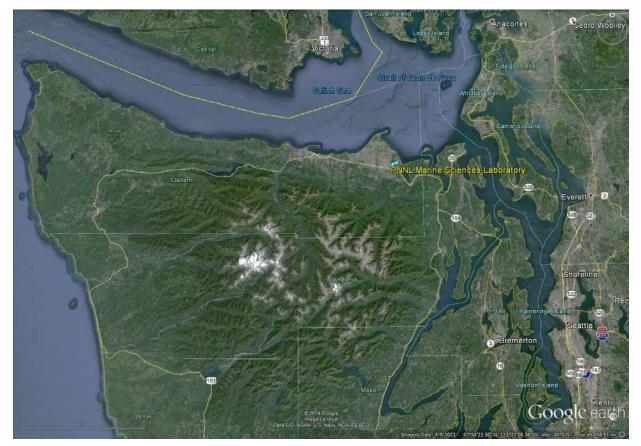


Figure 1.1. MSL in Northwestern Washington State

1.1 Battelle Land-Sequim and MSL Description

Battelle Land-Sequim (Figure 1.2) encompasses 150 acres of uplands and tidelands, of which about 7.5 acres has been developed for research operations. The research operations occur at several laboratories and other facilities in an area referred to as MSL, which includes analytical and general purpose laboratories and wet or support laboratories supplied with heated and cooled freshwater and seawater. MSL has two emission units with the potential to emit low levels of radioactive material. In addition, MSL has a state-of-the-art waste seawater treatment system, a dock facility for a 28-foot research vessel, and a specialized scientific diving boat.

Battelle Land-Sequim lies on the shores of the Strait of Juan de Fuca and is in the rain shadow of the Olympic Mountains in Clallam County, at approximate coordinates 48°04'40" N, 123°02'55" W. Despite its coastal location, it receives less than 15 inches of rainfall on average annually. Average monthly temperatures range from 31°F to 70°F. Nearby cities are Sequim (population 6,600), Port Angeles (population 19,000), and Port Townsend (population 9,100) (DOC 2011). Seattle is approximately 50 miles (mi) from MSL. The nearest sea border with Canada is about 17 mi from MSL in the Salish Sea; the nearest Canadian land border is about 25 mi northwest from MSL.

Emission points are located in buildings MSL-1 and MSL-5. The MSL-1 Building (Figure 1.3) contains facilities for biological, chemical, and physical studies in which marine or aquatic environmental conditions need to be maintained. This facility also houses a "cleanroom" for ultra-low-level trace measurements in environmental media, an electronics shop, and diving equipment storage. The MSL-5 Building (Figure 1.4) contains all-purpose chemistry and biochemistry laboratories. One laboratory in MSL-5 is set up for work with radionuclides; however, any laboratory could be set up for such work. A location for storage of hazardous, radioactive, and mixed waste is provided in MSL-5 Building.

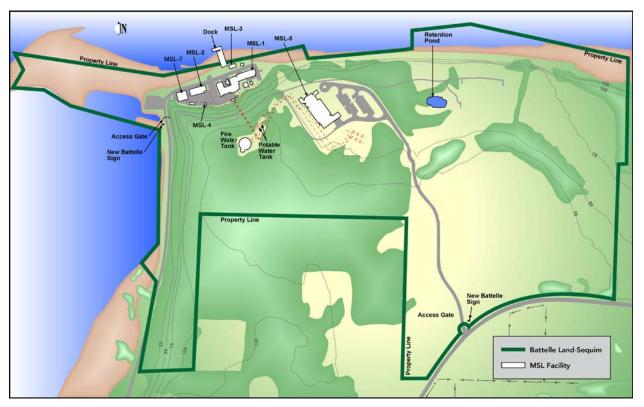


Figure 1.2. Battelle Land-Sequim and Marine Sciences Laboratory

Figure 1.3. Building MSL-1

Figure 1.4. Overhead View of Building MSL-5

2.0 Radionuclide Air Emissions

This section describes the two registered MSL emission units and presents emissions estimates for operations during CY 2015.

2.1 Major, Minor, and Fugitive Emissions Points

Two nonpoint source minor emission units associated with buildings MSL-1 and MSL-5 are registered with the state of Washington under the Radioactive Air Emissions License (RAEL)-014. Radioactive air emissions continue to be well below the criteria for classification as a minor emission unit (i.e., potential-to-emit [PTE] contribution is < 0.1 millirem per year [mrem/yr] effective dose equivalent [EDE] to the maximally exposed individual [MEI]). Information regarding the radionuclides of concern, emission rates, and emission unit physical characteristics are described below.

The emission units include EP-MSL-1 and EP-MSL-5 (Figure 1.2). EP-MSL-1 is located on the tidelands, and EP-MSL-5 is located on the upland. The emission unit characteristics are the same for both MSL-1 and MSL-5. These buildings have several locations where radioactive air emissions may originate and exit the building. While they are not fugitive by definition, emissions are fugitive in nature; however, because emissions can come from several points within each building, the emission unit is characterized as a nonpoint source (WAC 2016).

Radiological operations at MSL emit very low levels of radioactive materials. Appendix A contains the full list of radionuclides that may be handled at MSL. The 2015 radioactive material emissions to the air are given in Table 2.1. The 40 CFR 61, Appendix D method of determining unabated emissions was used. No credit was taken for abatement controls (e.g., HEPA filtration) at MSL-1 or MSL-5.

		2015 - EP-MSL-1 ^(a)	2015 - EP-MSL-5 (a)
Nuclide	Emission Type	(Ci)	(Ci)
H-3	beta/gamma	-	1.37E-09
C-14	beta/gamma	-	6.41E-10
K-40	beta/gamma	-	4.78E-12
Fe-55	beta/gamma	-	3.45E-14
Co-57	beta/gamma	-	9.46E-15
Co-60	beta/gamma	-	1.75E-14
Ni-63	beta/gamma	-	3.00E-08
Sr-90	beta/gamma	-	8.32E-13
Tc-99	beta/gamma	-	1.70E-10
Ru-106	beta/gamma	-	4.05E-13
Sb-125	beta/gamma	-	5.32E-13
I-125	beta/gamma	4.51E-11	1.50E-17
I-129	beta/gamma	-	1.15E-17
Cs-134	beta/gamma	-	3.14E-12
Cs-137	beta/gamma	-	3.72E-11
Ba-133	beta/gamma	-	2.00E-11
Eu-152	beta/gamma	-	6.18E-14
Eu-154	beta/gamma	-	1.68E-14
Eu-155	beta/gamma		1.77E-14
Pb-210	alpha ^b	-	1.28E-13
Po-208	alpha	-	6.98E-10
Po-209	alpha	-	1.62E-11
Ra-226	alpha	-	2.98E-13
Ra-228	alpha ^b	-	4.96E-14
Th-228	alpha	-	2.60E-13
Th-230	alpha	-	1.53E-13
Th-232	alpha	-	3.00E-11
U-234	alpha	1.67E-09	1.77E-09
U-235	alpha	7.63E-11	8.12E-11
U-238	alpha	1.66E-09	1.76E-09
Pu-238	alpha	-	8.16E-14
Pu-239	alpha	-	3.75E-13
Pu-240	alpha	-	3.75E-13
Am-241	alpha	-	4.34E-13
TO	TAL (Ci) beta/gamma	4.51E-11	3.22E-08
-	TOTAL (Ci) alpha	3.41E-09	4.36E-09

Table 2.1. 2015 MSL Inventory and Emissions Estimates

(a) Emissions based on 40 CFR 61, Appendix D methods.
(b) Although Pb-210 and Ra-228 are beta emitters, their decay products include alpha emitters; therefore, they are considered alpha emitters for dose determination.

3.0 Dose Assessment

This section describes the potential impact of MSL radiological air emissions. Radiological operations at MSL have not changed from the prior year. A review of radiological assessment needs was published in the Data Quality Objects report (Barnett et al. 2012).

3.1 Dose Model and Potential Receptors

The COMPLY Code version 1.6 (Level 4) was used for estimating dose for comparison to the U.S. Environmental Protection Agency (EPA) standard of 10 mrem/yr EDE to any member of the public (40 CFR 61, Subpart H, and WAC 246-247). This code is approved for use for compliance determination (40 CFR 61, Appendix E). Input parameters, originally reported by Barnett et al. (2012), were not changed (Table 3.1).

Potential receptor locations for 16 compass directions are provided in Table 3.2, as reported by Barnett et al. (2012), which concluded that continuation of the 190-m source-to-receptor distance used in prior evaluations would result in an overestimate of any expected receptor impacts, but would continue to be used. The nearest location where a member of the public would actually reside or abide (e.g., dwelling, business, school, office) relative to the MSL-1 or MSL-5 emissions locations was determined to be 270 m W or WNW. Given that winds blow predominantly toward the east (see Table 4.3 of Barnett et al. 2012), away from either of these 270-m receptors, an additional level of conservatism is included.

	MSL Value
Parameter	(Level 4)
Nuclide names	<varies by="" year=""></varies>
Concentrations (Ci/m ³)	NA
Annual possession amount (Ci)	NA
Release rates (Ci/yr or Ci/s)	<varies by="" year=""></varies>
Release height (m)	8 m
Building height (m)	8 m
Stack or vent diameter (m)	NA
Volumetric flow rate (m^3/s)	NA
Distance from source-to-receptor (m)	190 m ^(a)
Building width (m)	30 m
Wind speed (m/s)	2 m/s
Distances to sources of food production (m)	190 m ^(a)
Stack temperature (°F)	NA
Ambient air temperature (°F)	NA
Wind rose	NA(nwr) ^(b)
Building length	NA(nwr) ^(b)

Table 3.1. COMPLY Input Parameters

NA = not applicable.

(a) Smallest receptor distance to land boundary for either MSL-1 or MSL-5; applied to both emission units.
(b) NA(nwr) = not applicable because no wind rose data is used.

Direction from MSL-1 or MSL-5Smallest distance to BL-S boundarySmallest Distance to a Receptor Outside BL-S BoundaryN-1,790 m res ^(a) NNE-39,700 m res ^(a) NE-9,630 m res ^(a) ENE-2,000 m res ^(a) E-1,900 m res ^(a) ESE-2,620 m resSE-3,930 m resSSE-4,470 m resSSW630 m820 m res; 290 m farmSW360 m ^(a) 420 m res ^(a) WSW230 m290 m resWNW230 m270 m resNW280 m520 m resNW-1,000 m res/farm					
N - $1,790 \text{ m res}^{(a)}$ NNE - $39,700 \text{ m res}^{(a)}$ NE - $9,630 \text{ m res}^{(a)}$ ENE - $2,000 \text{ m res}^{(a)}$ E - $2,000 \text{ m res}^{(a)}$ E - $2,000 \text{ m res}^{(a)}$ E - $2,620 \text{ m res}$ SE - $3,930 \text{ m res}$ SSE - $3,930 \text{ m res}$ SSE - $4,470 \text{ m res}$ SSW 630 m $820 \text{ m res}; 290 \text{ m farm}$ SW $360 \text{ m}^{(a)}$ $420 \text{ m res}^{(a)}$ WSW 230 m 290 m res WNW 230 m 270 m res WNW 230 m 270 m res NW 280 m 520 m res	Direction from	Smallest distance to BL-S	Smallest Distance to a Receptor		
NNE- $39,700 \text{ m res}^{(a)}$ NE- $9,630 \text{ m res}^{(a)}$ ENE- $2,000 \text{ m res}^{(a)}$ E- $1,900 \text{ m res}^{(a)}$ ESE- $2,620 \text{ m res}$ SE- $3,930 \text{ m res}$ SSE- $4,470 \text{ m res}$ SSW 630 m $820 \text{ m res}; 290 \text{ m farm}$ SW $360 \text{ m}^{(a)}$ $420 \text{ m res}^{(a)}$ WSW 230 m 290 m res WNW 230 m 270 m res WNW 230 m 270 m res WNW 230 m 520 m res	MSL-1 or MSL-5	boundary	Outside BL-S Boundary		
NE- $9,630 \text{ m res}^{(a)}$ ENE- $2,000 \text{ m res}^{(a)}$ E- $1,900 \text{ m res}^{(a)}$ ESE- $2,620 \text{ m res}$ SE- $3,930 \text{ m res}$ SSE- $4,470 \text{ m res}$ SSW 630 m $820 \text{ m res}; 290 \text{ m farm}$ SW $360 \text{ m}^{(a)}$ $420 \text{ m res}^{(a)}$ WSW 230 m 290 m res WNW 230 m 270 m res WNW 230 m 270 m res WNW 280 m 520 m res	Ν	-	1,790 m res ^(a)		
ENE- $2,000 \text{ m res}^{(a)}$ E- $1,900 \text{ m res}^{(a)}$ ESE- $2,620 \text{ m res}$ SE- $3,930 \text{ m res}$ SSE- $4,470 \text{ m res}$ SSE- $4,470 \text{ m res}$ SW 630 m $820 \text{ m res}; 290 \text{ m farm}$ SW $360 \text{ m}^{(a)}$ $420 \text{ m res}^{(a)}$ WSW 230 m 290 m res WNW 220 m 270 m res WNW 230 m 270 m res WNW 280 m 520 m res	NNE	-	39,700 m res ^(a)		
E- $1,900 \text{ m res}^{(a)}$ ESE- $2,620 \text{ m res}$ SE- $3,930 \text{ m res}$ SSE- $4,470 \text{ m res}$ S 570 m 640 m res/farm SSW 630 m $820 \text{ m res}; 290 \text{ m farm}$ SW $360 \text{ m}^{(a)}$ $420 \text{ m res}^{(a)}$ WSW 230 m 290 m res W 220 m 270 m res WNW 230 m 270 m res NW 280 m 520 m res	NE	-	9,630 m res ^(a)		
ESE - 2,620 m res SE - 3,930 m res SSE - 4,470 m res S 570 m 640 m res/farm SSW 630 m 820 m res; 290 m farm SW 360 m ^(a) 420 m res ^(a) WSW 230 m 290 m res W 220 m 270 m res WNW 230 m 270 m res NW 280 m 520 m res	ENE	-	2,000 m res ^(a)		
SE - 3,930 m res SSE - 4,470 m res S 570 m 640 m res/farm SSW 630 m 820 m res; 290 m farm SW 360 m ^(a) 420 m res ^(a) WSW 230 m 290 m res W 220 m 270 m res WNW 230 m 270 m res WNW 230 m 520 m res	Е	-	1,900 m res ^(a)		
SSE - 4,470 m res S 570 m 640 m res/farm SSW 630 m 820 m res; 290 m farm SW 360 m ^(a) 420 m res ^(a) WSW 230 m 290 m res W 220 m 270 m res WNW 230 m 270 m res WNW 230 m 520 m res	ESE	-	2,620 m res		
S 570 m 640 m res/farm SSW 630 m 820 m res; 290 m farm SW 360 m ^(a) 420 m res ^(a) WSW 230 m 290 m res W 220 m 270 m res WNW 230 m 270 m res WNW 230 m 520 m res	SE	-	3,930 m res		
SSW 630 m 820 m res; 290 m farm SW 360 m ^(a) 420 m res ^(a) WSW 230 m 290 m res W 220 m 270 m res WNW 230 m 270 m res NW 280 m 520 m res	SSE	-	4,470 m res		
SW 360 m ^(a) 420 m res ^(a) WSW 230 m 290 m res W 220 m 270 m res WNW 230 m 270 m res NW 230 m 520 m res	S	570 m	640 m res/farm		
WSW 230 m 290 m res W 220 m 270 m res WNW 230 m 270 m res NW 280 m 520 m res	SSW	630 m	820 m res; 290 m farm		
W 220 m 270 m res WNW 230 m 270 m res NW 280 m 520 m res	SW	360 m ^(a)	420 m res ^(a)		
WNW 230 m 270 m res NW 280 m 520 m res	WSW	230 m	290 m res		
NW 280 m 520 m res	W	220 m	270 m res		
	WNW	230 m	270 m res		
NNW - 1,000 m res/farm	NW	280 m	520 m res		
	NNW	-	1,000 m res/farm		

Table 3.2. Potential MSL MEI Locations

BL-S = Battelle Land-Sequim (see Figure 1.2).

A dash (-) = a shoreline location where no potential receptor could reside or abide.

res = residence site.

(a) Distance from MSL-1 applied; all other distances are from MSL-5.

3.2 Compliance Assessment

The dose standard in 40 CFR 61, Subpart H, applies to radionuclide air emissions, other than radon, from DOE facilities. Dose is estimated as the product of the emission rate (Ci/yr) and unit dose factor (mrem/yr at MEI location per Ci/yr released). Unit dose factors for a number of nuclides are indicated in Appendix B. The Am-241 unit dose factor was applied to all alpha-emitters and the Cs-137 unit dose factor was applied to all beta/gamma emitters, as a conservative measure, except for I-129, which used the nuclide-specific dose factor. For CY 2015, the dose assigned to the MSL MEI overestimates any actual offsite dose. The dose was calculated for a location 190 m (0.12 mi) from the emission point which is the location of a hypothetical boundary receptor. This location is also the point of maximum annual air concentration in an unrestricted area where any member of the public may be (WAC 2007). Sea locations were not considered because the dose factors assume vegetable, milk, and meat production at the receptor location.

The EDE to the 2015 MSL MEI from routine and non-routine point source emissions was 1.1E-04 mrem (1.1E-06 mSv). Table 3.3 shows the relative contributions of each nuclide and facility to the MEI dose. The 2014 MEI estimate was 9E-5 mrem/yr (9E-07 mSv/yr) EDE (Snyder and Barnett 2015).

	MSL-1	MSL-5	Total			
RELEASES (Ci)						
Beta/gamma	4.51E-11	3.22E-08	3.23E-08			
Alpha	3.41E-09	4.36E-09	7.76E-09			
MEI EDE (mrem)						
Beta/gamma ^(a)	2.12E-08	1.5E-05	1.5E-05			
Alpha ^(b)	3.99E-05	<u>5.1E-05</u>	<u>9.1E-05</u>			
Total (mrem)	4.0E-05	6.6E-05	1.1E-04			
DOSE CONTRIBUTION (%)						
Beta/gamma	0.1%	23%	14%			
Alpha 99.9% 77% 86%						
(a) Unit dose factor for Cs-137 applied to estimate dose for all nuclide emissions except I-129.						

Table 3.3. MSL 2015 Radionuclide Emissions and MEI Dose

(b) Unit dose factor for Am-241 applied to estimate dose.

Comparing the MSL 2015 MEI dose to average U.S. background radiation (NCRP 2009):

Annual natural background radiation	310.0	mrem/yr
• Daily natural background radiation	0.85	mrem/d
Hourly natural background radiation	0.035	mrem/hr
• Per minute natural background radiation	0.00059	mrem/min
• MSL 2015 MEI dose	0.00011	mrem/yr
• Per second natural background radiation	0.0000098	mrem/sec

4.0 Supplemental Information

This section provides supplemental information related to MSL radionuclide air emissions in 2015. Supplemental information is provided as part of a Memorandum of Understanding between DOE and EPA (DOE 1995). Collective dose information is reported under DOE O 458.1 requirements (DOE 2011).

4.1 Collective Dose Estimate

An estimated 2.35 million people live within 50 mi (80 km) of MSL, with about 362,000 of those residing in Canada (Zuljevic et al. 2016). The populations and the major U.S. cities at various distances from MSL are given in Table 4.1. Victoria, British Columbia, is the only major Canadian city within 50 mi of MSL and is more than 20 mi from MSL.

Population at	Distance	
Indicated Distance ^(a)	(mi)	Cities at Indicated Distances
29,097	0–10	City of Sequim
55,533	10-20	Port Angeles
240,311	20-30	Oak Harbor
701,151	30–40	Anacortes, Bremerton (portion), Edmonds, Everett (portion), Friday Harbor, Marysville (portion), Poulsbo, Shoreline, Stanwood
1,322,999	40–50	Bothell, Bremerton (portion), Everett (portion), Kirkland, Lynnwood, Marysville (portion), Mount Vernon, Seattle (large portion), West Seattle
(a) Zuljevic et al. 2016		

Table 4.1. Populations and Significant U.S. Cities within 50 mi of MSL

The collective dose was estimated assuming the total 2015 curies released (Table 3.3) dispersed in the single direction. The maximum collective dose was determined to result from dispersion to the west, which only contains U.S. populations. The MEI dose (1.1E-4 mrem) was multiplied by a population weighted air concentration in the direction of maximum collective impact for a collective dose of 1.2E-4 person-rem. If the release were dispersed only to the maximum Canadian sector (NNW), the maximum estimated Canadian collective dose would be 4.9E-5 person-rem. Dispersal towards the large, but distant, Seattle population sector (SE) would have resulted in a collective dose about 75% less than the collective U.S. dose indicated.

4.2 Compliance Status with Subparts Q and T of 40 CFR 61

- No storage or disposal of radium-bearing materials occurs at MSL; therefore, 40 CFR 61, Subpart Q does not apply to MSL operations.
- No uranium mill tailings or ore disposal activities have been conducted at MSL; therefore, 40 CFR 61, Subpart T does not apply to MSL operations.

4.3 Other Supplemental Information

- Periodic confirmatory measurement information is not required by the Notices of Construction (NOCs).
- The PNNL Radioactive Material Tracking system is used to manage potential emissions below permit thresholds resulting in overall confirmation of inventory limits and emissions estimates to respective NOCs.
- Quality assurance program status of compliance with 40 CFR 61, Appendix B, Method 114 does not apply because no air sampling is conducted at MSL.
- There were no radon emissions in 2015.

5.0 References

40 CFR 61, as amended. *National Emission Standards for Hazardous Air Pollutants* (NESHAP), Appendix B, "Test Methods."

40 CFR 61, as amended. *National Emission Standards for Hazardous Air Pollutants* (NESHAP), Appendix D, "Methods for Estimating Radionuclide Emissions."

40 CFR 61, as amended. *National Emission Standards for Hazardous Air Pollutants* (NESHAP), Appendix E, "Compliance Procedures Methods for Determining Compliance with Subpart I."

40 CFR 61, as amended. *National Emission Standards for Hazardous Air Pollutants* (NESHAP), Subpart H, "National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities."

40 CFR 61, as amended. *National Emission Standards for Hazardous Air Pollutants* (NESHAP), Subpart Q, "National Emission Standards for Radon Emissions from Department of Energy Facilities."

40 CFR 61, as amended. *National Emission Standards for Hazardous Air Pollutants* (NESHAP), Subpart T, "National Emission Standards for Radon Emissions from the Disposal of Uranium Mill Tailings."

Barnett JM, KM Meier, SF Snyder, EJ Antonio, BG Fritz, and TM Poston. 2012. *Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the Marine Sciences Laboratory, Sequim Site*. PNNL-22111, Pacific Northwest National Laboratory, Richland, WA.

DOC—U.S. Department of Commerce. 2011. 2010 Census Summary File 1-Washington, 2010 Census of Population and Housing [wa_2010_sf1_asr_city.xlsx], U.S. Census Bureau, Department of Commerce, Washington, D.C. Last accessed 3/18/2014 at http://www.ofm.wa.gov/pop/census2010/data.asp.

DOE—U.S. Department of Energy. 1995. "Memorandum of Understanding Between the U.S. Environmental Protection Agency and the U.S. Department of Energy Concerning the Clean Air Act Emission Standards for Radionuclides 40 CFR Part 61 Including Subparts H, I, Q & T" (letter to E. Ramona, U.S. Environmental Protection Agency) from Raymond Berube, U.S. Department of Energy, Washington, D.C., May 16.

DOE—U.S. Department of Energy. 2009. *Guide of Good Practices for Occupational Radiological Protection in Uranium Facilities*. DOE-STD-1136-2009, Office of Environment, Health, Safety & Security, Washington, D.C.

DOE—U.S. Department of Energy. 2010. *Calculating Potential-to-Emit Radiological Releases and Doses*. DOE/RL-2006-29, Rev 1, Richland Operations Office, Richland, WA.

DOE—U.S. Department of Energy. 2011. *Radiation Protection of the Public and the Environment*. DOE Order 458.1, admin chg 3, Office of Environment, Health, Safety & Security, Washington, D.C.

EPA—U.S. Environmental Protection Agency. 1989. *User's Guide for the COMPLY Code*. EPA 520/1-89-003, U.S. Environmental Protection Agency, Office of Radiation and Indoor Air, Washington, D.C.

NCRP—National Council on Radiation Protection and Measurements. 2009. *Ionizing Radiation Exposure* of the Population of the United States. NCRP, Bethesda, MD.

PNSO—Pacific Northwest Site Office. 2013. *PNNL Terminology Reference Document*. PNSO-REFR-05, U.S. Department of Energy, PNSO, Richland, WA.

Snyder SF and JM Barnett. 2015. *Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2014*. PNNL-22342-3, Pacific Northwest National Laboratory, Richland, WA.

WAC—Washington Administrative Code. 2007. *Ambient Air Quality Standards and Emission Limits for Radionuclides*. WAC-173-480, Statutory Law Committee, Olympia, WA.

WAC—Washington Administrative Code. 2016. *Radiation Protection – Air Emissions*. WAC-246-247, Statutory Law Committee, Olympia, WA.

Zuljevic N, TE Seiple, SF Snyder. 2016. *Battelle Land–Sequim Regional Population*. PNNL-25305, Pacific Northwest National Laboratory, Richland, WA.

Appendix A

List of Radioactive Materials Handled or Potentially Handled, or Authorized for Use at MSL in 2015

Appendix A: List of Radioactive Materials Handled or Potentially Handled, or Authorized for Use at MSL in 2015

Table A.1. List of Radioactive Materials Handled or Potentially Handled, or Authorized for Use at MS	L
in 2015	

Ac-225	Bk-249	Cs-134m	Ho-166	Mn-56	Pd-109	Rh-102	Ta-180	U-232
Ac-223 Ac-227	Bk-249 Bk-250	Cs-134III Cs-135	Ho-166m	Mo-93	Pm-143	Rh-102 Rh-102m	Ta-180 Ta-182	U-232 U-233
Ac-227 Ac-228	Br-82	Cs-135 Cs-136	I-122	Mo-99	Pm-144	Rh-102m	Ta-182 Ta-182m	U-233 U-234
Ag-108	Br-82m	Cs-130 Cs-137	I-122 I-123	Mo-103	Pm-145	Rh-10311 Rh-104	Ta-182III Ta-183	U-234 U-235
Ag-108 Ag-108m	Br-82	Cs-137 Cs-138	I-125 I-125	Mo-103 Mo-104	Pm-145 Pm-146	Rh-104 Rh-105	Tb-157	U-235 U-235m
Ag-109m	Br-85 Br-84	Cs-138 Cs-139	I-125 I-126	Mo-104 Mo-105	Pm-147	Rh-105 Rh-105m	Tb-157	U-235III U-236
Ag-1109m Ag-110	Br-84m	Cs-139 Cs-140	I-120 I-128	N-13	Pm-147 Pm-148	Rh-10511 Rh-106	Tb-158 Tb-160	U-230 U-237
Ag-110 Ag-110m		Cs-140 Cs-141	I-128 I-129	N-13 Na-22			Tb-160 Tb-161	U-237 U-238
Ag-11011 Ag-111	Br-85 C-11	Cu-64	I-129 I-130	Na-22 Na-24	Pm-148m Pm-149	Rn-219 Rn-220	Tc-95	U-238 U-239
Al-26	C-11 C-14		I-130 I-130m		Pm-149 Pm-151			U-239 U-240
Al-28	C-14 C-15	Cu-66 Cu-67	I-130III I-131	Na-24m Nb-91		Rn-222 Rn-224	Tc-95m Tc-97	V-48
	C-13 Ca-41	Dy-159	I-131 I-132		Po-208			v-48 V-49
Am-240		Dy-165		Nb-91m Nb-92	Po-209	Ru-97	Tc-97m	
Am-241	Ca-45		I-132m		Po-210	Ru-103	Tc-98	W-181
Am-242	Ca-47	Dy-169	I-133	Nb-93m	Po-211	Ru-105	Tc-99	W-185
Am-242m	Cd-107	Er-169	I-133m	Nb-94	Po-212	Ru-106	Tc-99m	W-187
Am-243	Cd-109	Er-171	I-134	Nb-95	Po-213	S-35	Tc-101	W-188
Am-245	Cd-111m	Es-254	I-134m	Nb-95m	Po-214	Sb-122	Tc-103	Xe-122
Am-246	Cd-113	Eu-150	I-135	Nb-97	Po-215	Sb-124	Tc-106	Xe-123
Ar-37	Cd-113m	Eu-152	In-106	Nb-97m	Po-216	Sb-125	Te-121	Xe-125
Ar-39	Cd-115	Eu-152m	In-111	Nb-98	Po-218	Sb-126	Te-121m	Xe-127
Ar-41	Cd-115m	Eu-154	In-113m	Nb-100	Pr-143	Sb-126m	Te-123	Xe-127m
Ar-42	Cd-117	Eu-155	In-114	Nb-101	Pr-144	Sb-127	Te-123m	Xe-129m
As-74	Cd-117m	Eu-156	In-114m	Nb-103	Pr-144m	Sb-129	Te-125m	Xe-131m
As-76	Ce-139	Eu-157	In-115	Nd-144	Pu-234	Sc-44	Te-127	Xe-133
As-77	Ce-141	F-18	In-115m	Nd-147	Pu-236	Sc-46	Te-127m	Xe-133m
At-217	Ce-142	Fe-55	In-116	Ni-56	Pu-237	Sc-47	Te-129	Xe-135
Au-193	Ce-143	Fe-59	In-116m	Ni-57	Pu-238	Se-75	Te-129m	Xe-135m
Au-194	Ce-144	Fr-221	In-117	Ni-59	Pu-239	Se-79	Te-131	Xe-137
Au-195	Cf-249	Fr-223	In-117m	Ni-63	Pu-240	Se-79m	Te-131m	Xe-138
Au-196	Cf-250	Ga-67	Ir-192	Ni-65	Pu-241	Si-31	Te-132	Xe-139
Au-198	Cf-251	Ga-68	K-40	Np-235	Pu-242	Si-32	Te-133	Y-88
Au-198m	Cf-252	Ga-70	K-42	Np-236	Pu-243	Sm-145	Te-133m	Y-90
Au-199	Cl-36	Ga-72	Kr-81	Np-237	Pu-244	Sm-146	Te-134	Y-90m
Ba-131	Cm-241	Gd-148	Kr-81m	Np-238	Pu-246	Sm-147	Th-227	Y-91
Ba-133	Cm-242	Gd-149	Kr-83m	Np-239	Ra-223	Sm-148	Th-228	Y-91m
Ba-133m	Cm-243	Gd-151	Kr-85	Np-240	Ra-224	Sm-151	Th-229	Y-92
Ba-137m	Cm-244	Gd-152	Kr-85m	Np-240m	Ra-225	Sm-153	Th-230	Y-93
Ba-139	Cm-245	Gd-153	Kr-87	O-15	Ra-226	Sm-157	Th-231	Yb-164
Ba-140	Cm-246	Gd-159	Kr-88	O-19	Ra-228	Sn-113	Th-232	Yb-169
Ba-141	Cm-247	Ge-68	Kr-89	Os-191	Rb-81	Sn-117m	Th-233	Yb-175
Ba-142	Cm-248	Ge-71	Kr-90	P-32	Rb-82	Sn-119m	Th-234	Yb-177
Ba-143	Cm-250	Ge-71m	La-137	P-33	Rb-83	Sn-121	Ti-44	Zn-65
Be-7	Co-56	Ge-75	La-138	Pa-231	Rb-84	Sn-121m	Ti-45	Zn-69
Be-10	Co-57	Ge-77	La-140	Pa-233	Rb-86	Sn-123	Ti-51	Zn-69m
Bi-207	Co-58	Ge-77m	La-141	Pa-234	Rb-87	Sn-125	Tl-201	Zr-88
Bi-208	Co-60	H-3	La-142	Pa-234m	Rb-88	Sn-126	T1-204	Zr-89
Bi-210	Co-60m	Hf-175	La-144	Pb-209	Rb-89	Sr-85	T1-206	Zr-93
Bi-210m	Cr-49	Hf-178m	Lu-177	Pb-210	Rb-90	Sr-87m	T1-207	Zr-95
Bi-211	Cr-51	Hf-179m	Lu-177m	Pb-211	Rb-90m	Sr-89	T1-208	Zr-97
Bi-212	Cr-55	Hf-181	Mg-27	Pb-212	Re-186	Sr-90	T1-209	Zr-98
Bi-213	Cs-131	Hf-182	Mg-28	Pb-214	Re-187	Sr-91	Tm-168	Zr-99
Bi-214	Cs-132	Hg-203	Mn-52	Pd-103	Re-188	Sr-92	Tm-170	Zr-100
Bk-247	Cs-134	Ho-163	Mn-54	Pd-107	Rh-101	Ta-179	Tm-171	

Appendix B

COMPLY Unit Dose Factors

Appendix B: COMPLY Unit Dose Factors

As originally reported in Barnett et al. 2012, COMPLY v1.6 was used to determine unit-release dose factors (UDFs), which represent impacts to a hypothetical receptor 190 m from the emission unit with an assumed 2 m/s wind speed and wind blowing toward the receptor 25% of the time. These assumptions are based on calculations of COMPLY v1.6 at Level 4 with no wind rose used. The appropriate solubility class (DOE 2010) was applied, replacing the DOE 2010 solubility classifications (F,M,S) with the analogous solubility classifications available in COMPLY (D,W, Y, respectively). Several nuclides (¹³³Ba, ²²Na, ²¹⁰Pb, ³H, and ¹⁴C) are footnoted to indicate that only one option was available (EPA 1989). Additionally, the more conservative (overestimating) classification was applied to uranium. UDFs for radionuclides either in current inventory or previously used at MSL are presented.

		Unit Dose Factor
Nuclide	COMPLY Solubility Class	(mrem EDE per Ci/yr released)
²⁴¹ Am ^(a)	W	11700
$^{133}Ba^{(b)}$	D	135
${}^{14}C^{(c)}$	"1"	1.5
¹⁰⁹ Cd	W	5.5
⁵⁷ Co	W	4.8
⁶⁰ Co	W	426
$^{137}Cs^{(a)}$	D	469
¹⁵⁴ Eu	W	345
¹⁵⁵ Eu	W	13.3
³ H ^(b)	V	0.004
¹²⁵ I	D	84.5
¹²⁹ I	D	1250
⁵⁴ Mn	W	27.2
$^{22}Na^{(b)}$	D	234
⁶³ Ni	W	0.3
²¹⁰ Pb ^(b)	D	1100
²³⁸ Pu	W	10300
²³⁹ Pu	W	11200
¹⁰⁶ Ru	W	13.9
⁹⁰ Sr ^(d)	Y	211
⁹⁹ Tc	W	32.7
²³⁴ U	Y	3450
²³⁵ U	Y	3470
²³⁸ U	Y	3110
Natural U ^(e)	Y	3290

Table	R 1	MSI	Unit	Dose	Factors
Table	D.1.	MOL	UIII	Dose	Factors

Bold font = alpha-emitting nuclides. All others are beta/gamma emitters.

(a) ²⁴¹Am is the surrogate alpha emitter for those not specifically listed; ¹³⁷Cs is the surrogate beta emitter for those not specifically listed.

(b) The solubility class listed is the only option available in COMPLY v1.6.

(c) Default class of COMPLY v1.6 used.

(d) Solubility class W is preferred, but not an option. Class Y was used as an overestimating assumption.

(e) Determined from natural uranium mass fractions: 0.000055^{234} U; 0.0072^{235} U; 0.9928^{238} U (DOE 2009).

Distribution

No. of <u>Copies</u>

1 City of Sequim 152 W Cedar Street Sequim, WA 98382-3317

C Bush, City Manager

 Clallam County Department of Community Development
 223 East 4th Street, Suite 5 Port Angeles, WA 98362-3000

S Gray, Deputy Director

Clallam County Commissioners
 223 East 4th Street, Suite 4
 Port Angeles, WA 98362-3000

M Chapman, Commissioner M Ozias, Commissioner B Peach, Commissioner

Clallam County Health & Human Services
 223 East 4th Street, Suite 14
 Port Angeles, WA 98362-3000

I Burks, Director

Hoh Tribe
 P.O. Box 2196; 2464 Lower Hoh Road
 Forks, WA 98331-2196

M Lopez, Tribal Chairwoman

1 Jamestown S'Klallam Tribe 1033 Old Blyn Highway Sequim, WA 98382-7670

WR Allen, Chairman

Lower Elwha Klallam Tribe
 2851 Lower Elwha Road
 Port Angeles, WA 98363-8409

FG Charles, Chairwoman

No. of Copies

Makah Tribe
 P.O. Box 115
 Neah Bay, WA 98357-0115

M Tolliver, Madam Chair

 Olympic Region Clean Air Agency (ORCAA)
 2940 Limited Lane NW, Suite B Olympia, WA 98502-6503

F McNair, Executive Director

1 Quileute Nation P.O. Box 279 La Push, WA 98350-0279

C. Woodruff, Chairman

1 Port Gamble S'kallam Tribe 31912 Little Boston Road NE Kingston, WA 98346-9700

JC Sullivan, Chairman

 U.S. Department of Energy-Headquarters 1000 Independence Avenue SW Washington, D.C. 20585-0001

JM Blaikie	SC-31
AC Lawrence	AU-20
R Natoli	AU-23
CA Ostrowski	$(PDF)^1$
EP Regnier	(PDF)
A Wallo III	(PDF)

2 U.S. Environmental Protection Agency Region 10
Environmental Cleanup Unit 2
Office of Environmental Cleanup 1200 Sixth Avenue, Suite 900
Seattle, WA 98101-3140
D.Zhan (2)

D Zhen (2) ECL-122

¹ PDF = electronic distribution only

Distribution

No. of Copies

No. of

U.S. Environmental Protection Agency William Jefferson Clinton West Building 1301 Constitution Avenue NW Washington, D.C. 20004

RT Peake	(PDF)
DJ Schultheisz	(PDF)
JP Walsh	1408D

 Washington State Department of Ecology Hanford Project Office
 3100 Port of Benton Boulevard Richland, WA 99354-1670

R Skinnarland H0-57

 Washington State Department of Health Radioactive Air Emissions Section
 309 Bradley Boulevard, Suite 201
 Richland, WA 99352-4524

SD Berven	(PDF)
PJ Martell, Manager (2)	B1-42
JW Schmidt	(PDF)

LIBRARIES

- 1 Richland Public Library 955 Northgate Drive Richland, WA 99352-3505
- Mid-Columbia Libraries (PDF) Michael Huff, Collections and Services Director 405 S Dayton Street Kennewick, WA 99336-5660
- North Olympic Library System Sequim Branch
 630 N Sequim Avenue Sequim, WA 98382-3148

Copies

<u>ONSITE</u>

2 Mission Support Alliance, LLC

RA Kaldor	A3-01
SJ Johnson	A3-01

33 Pacific Northwest National Laboratory

CM Andersen	(PDF)
BG Anderson	(PDF)
EJ Antonio	(PDF)
MY Ballinger	(PDF)
JM Barnett (3)	J2-25
CP Beus	(PDF)
LE Bisping	(PDF)
JE Cabe	(PDF)
ME Cobb	SEQUI
SD Cooke	(PDF)
JP Duncan	K7-70
DL Edwards	K3-54
BG Fritz	(PDF)
EE Hickey	(PDF)
MD Hughes	SEQUI
KM McDonald	J2-25
CJ Nichols	(PDF)
GW Patton	(PDF)
JP Rishel	(PDF)
MR Sackschewsky	(PDF)
SB Sadler	(PDF)
SK Sanan	(PDF)
RD Sharp	(PDF)
SF Snyder (2)	K7-68
JA Stegen	(PDF)
MJ Stephenson	J2-25
HT Tilden II	(PDF)
PNNL Technical Library (2)	K5-02
Rad Air File Plan A1.1.1.4	J2-25
U.S. Department of Energy	
1 87	

- 1 U.S. Department of Energy Office of River Protection
 - DW Bowser (PDF)

Distribution

No. of <u>Copies</u>

No. of <u>Copies</u>

6	U.S. Department of Energy
	Pacific Northwest Site Office

AS Arend	(PDF)
SB Bigger	(PDF)
JL Carlson	(PDF)
TM McDermott (2)	K9-42
TP Pietrok	(PDF)

7 U.S. Department of Energy Richland Operations Office

DOE-RL Public Reading Room	H2-53
ET Faust	(PDF)
TW Ferns	(PDF)
DL Kreske	(PDF)
KD Leary	(PDF)
MK Marvin	(PDF)
MD Silberstein	(PDF)

This page left blank intentionally

Proudly Operated by Battelle Since 1965

902 Battelle Boulevard P.O. Box 999 Richland, WA 99352 1-888-375-PNNL (7665)

www.pnnl.gov