

XIA LLC 31057 Genstar Rd. Hayward CA 94544 Phone: (510) 401-5760 FAX: (510) 401-5761

High Rate Digital Signal Processing for Multi-Channel Microcalorimeters

Project PI: Hui Tan DOE Grant DE-FG02-07ER84760 XIA LLC 31057 Genstar Rd, Hayward, CA 94544, USA

Nuclear Physics SBIR/STTR Exchange Meeting

XIA LLC

September 14, 2010

Outline

- 1. Company Information
- 2. Introduction of Microcalorimeters
- 3. Motivation & Project Goals
- 4. Hardware Development
- 5. Pulse Processing Algorithm Development
- 6. Summary & Outlook

Company Information

- 1. Digital Gamma-Ray Spectrometers (DGF) Pixie-500, Pixie-16, Pixie-4, Polaris, etc.
- 2. Digital X-Ray Spectrometers (DXP) xMAP, Mercury, Saturn, µDXP, etc.
- 3. Low background alpha-particle counter UltraLo-1800 (0.0001 alpha/cm²/hr or lower)
- 4. Radioxenon monitoring in the atmosphere PhosWatch - a COTS detector system
- 5. Electronics for low temperature detectors Microcalorimeters Superconducting Tunnel Junction (STJ) detectors

Why we need microcalorimeters?

What are microcalorimeters?

Nuclear Physics SBIR/STTR Exchange Meeting

XIA LLC

Applications of microcalorimeters

- Microcalorimeters can achieve excellent energy resolutions:
 - 2 eV FWHM at 6 keV
 - 22 eV FWHM at 100 keV
 - 1 keV FWHM at 5 MeV
- Applications to a range of fields:
 - X-ray astronomy
 - materials analysis by X-ray, γ-ray, and alpha particle spectroscopy
 - dark matter detection

Motivation

Project Goals

- Develop low cost readout electronics that is capable of:
 - processing microcalorimeters pulses in real time from different readout schemes
 - achieving energy resolution that is comparable to optimal filtering results while significantly improving output count rate capability
 - automating the setup, calibration and operation of data acquisition from many channels of microcalorimeters

Technical Approach

Project Tasks and Schedule

Phase II performance period: 8/15/2008 – 8/14/2010

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Tasks	Status
	Tas	sk 1						Build prototype core hardware	Done
		Task 2						Build daughterboards	Done
				Task 3				Build final core hardware	Finishing up
	Tas	sk 4						Develop trigger/filter firmware	Finishing up
		ask 5						Adapt System FPGA firmware	Done
		Task 6						Adapt DSP code firmware	Done
		Tas	sk 7					Adapt host drivers	Finishing up
				Т	ask 8			Improve algorithms for multiple decays and high count rate	Done
				Т	ask 9			Improve algorithms for non-ideal effects	Done
					Task	10		Develop automated parameter setup	Finishing up
					Task	11		Develop system monitoring	Finishing up
				Task	12			Develop output data processing tools	Finishing up
				Task 13				Discussions with, and testing at, collaborating labs	Ongoing

XIA's Microcalorimeter Main Processor Board

XIA's Microcalorimeter AFE Daughter Card (top)

Daughter card connectors

XIA's Microcalorimeter AFE Daughter Card (bottom)

Nuclear Physics SBIR/STTR Exchange Meeting

Main Processor Board + Daughter Card Combo

- 8-channel individual-inputs daughter card coupled to main processor board
- 3U compact PCI/PXI format

XIA LLC

XIA's Microcalorimeter NIST Daughter Card (top)

XIA's Microcalorimeter NIST Daughter Card (bottom)

Optical transmitters for on-board optical test signals (2)

Nuclear Physics SBIR/STTR Exchange Meeting

September 14, 2010

Microcalorimeter Pulse Processing Algorithms

Optimal Filter

- An established technique for measuring microcalorimeter pulse height
- Requires wellseparated pulses, i.e., can't handle overlapping pulses
- Output count rate capability limited

Microcalorimeter Pulse Processing Algorithms

Nuclear Physics SBIR/STTR Exchange Meeting

XIA LLC

September 14, 2010

XIA Filter Results: TES Gamma-ray detectors

Tan et al., "High Rate Pulse Processing Algorithms for Microcalorimeters," LTD-13, AIP Conference Proceeding, vol. 1185, pp. 294-297, 2009

XIA LLC

XIA Filter Results: TES X-ray detectors

XIA Filter Results: TES X-ray detectors

		Optima	al Filter	XIA Filter	
Time Division Multiplxeing	Predicted Energy Resolution (eV, FWHM)	Average Energy Resolution (eV, FWHM)	Average Records Acceptance Rate (%)	Average Energy Resolution (eV, FWHM)	Average Events Acceptance Rate (%)
2×4	2.82	$\textbf{2.68} \pm \textbf{0.07}$	93.0 ± 0.3	3.05 ± 0.18	99.33 ± 0.05
2×8	2.89	2.93 ± 0.14	92.4 ± 0.5	3.21 ± 0.19	99.41 ± 0.05
2×12	3.02	$\textbf{3.04} \pm \textbf{0.19}$	91.1 ± 1.2	3.36 ± 0.15	99.13 ± 0.07

Tan et al., "Development of a Real-time Pulse Processing Algorithm for TES-based X-ray Microcalorimeters," IEEE Transactions on Applied Superconductivity, submitted for publication

XIA LLC

Summary & Outlook

- We built prototype main processor boards and AFE daughter cards. NIST daughter card is in production. We are finalizing the design for the main processor boards and AFE daughter cards.
- Significant efforts on developing real time pulse processing algorithms for microcalorimeters. Achieved better or comparable energy resolutions that were achieved by optimal filtering, while significantly improved pulse acceptance rates.
- Project is Phase III now: strong interests in our electronics from the microcalorimeter community.
- Already received commercial orders for the main board/AFE daughter card system.