Fast, Low Noise Photodetectors for Nuclear Physics

Principal Investigator Kanai S. Shah

DOE Contract Number DE-FG02-08ER84988

Program Goals

To develop high gain, low noise, compact CMOS based silicon photomultipliers as optical detectors for scintillation studies in nuclear and particle physics experiments. These sensors can be formatted as large area discrete devices, multi-element arrays, and can be fabricated to possess position sensitivity. These solidstate photomultipliers (SSPMs) will compete with PMTs as photodetectors in scintillations spectroscopy and calorimeter applications.

Motivation to Replace PMTs

- PMTs possess high gain (10⁶) and low noise (ENF ~ 1) but...
- o PMTs are bulky and fragile
- o PMTs are sensitive to magnetic fields
- o PMTs require high bias (~1000 V)
- o PMTs have low quantum efficiency
- o Spectral response of PMTs is narrow
- o Red response of low noise PMTs is poor

Solid-State Photomultipliers

General SSPM main features

- Very high gain (>10⁵), very simple electronic readout
- Low bias operation (~30 V)
- Fast response (sub-ns rise time)
- Very low excess and electronic noise (<1 electron level)
- Dark noise a problem at very low light levels
- Insensitive to magnetic fields
- Position sensitive structures possible
- RMD fabricates these devices by CMOS process, hence cost should be very low upon mass production.
- On-chip integration of readout electronics possible

MRS Silicon Photomultiplier

RMD

- Independent Geiger Mode Micro-APDs (~ 30 μm)
- Binary output, constant amplitude
- Passively quenched
- Common substrate, signals are summed
- Single analogue output

CMOS SSPM Micro-Pixels

Design 1 (n-on-p) deep

Design 2 (p-on-n) shallow, but isolated from substrate

CMOS SSPMs

10 x 10 mm² area 30 micron pixels 49% fill factor

CMOS SSPMs

6 x 6 SSPM Array

5 x 5 mm² PS-SSPM

SSPM Single Photon Sensitivity

RMD

1 cm² SSPM Linearity

RMD

SSPM Dark Count Rate

RMD

SSPM Quantum Efficiency

SSPM Energy Resolution

SSPM Timing Resolution

RMD

Position Sensitive SSPM Concept

RMD

PS-SSPM & Readout PCB

	PS-SSPM Parameters	
State of the second	Number of micro-pixels	11,664 (108 x 108)
LAZA MORALES MOXIN	Micro-pixel area	30 x 30 µm ²
	Micro-pixel pitch	44.3 x 44.3 μm ²
	Geometrical Fill Factor	46%
	Quench Resistors	$143.8 \text{ k}\Omega$
	Network Resistors	246.5Ω
22	Detection efficiency @ 400 nm	$\sim 10\%$
	Dark Current (µA/mm²)	10
	Dark Count Rate (kHz/pixel)	~ 117
	Operating Bias	$\sim 32 \ { m V}$
	Operating gain	$\sim 10^6$
	Excess Noise Factor	~ 1
And the second s	Capacitance (fF/pixel)	150

- PS-SSPM chip was packaged on a ceramic 145 pin grid array
- Zero insertion force (ZIF) socket for easy removal
- Custom PCB, preamplifiers located under PS-SSPM

PS-SSPM Energy Resolution

RMD

PS-SSPM Spatial Resolution

PS-SSPM Scintillator Images

6 x 6 LYSO array having 500 μm pixels

Uniform flood with ²²Na (511 keV)

RMD has filed for IP on the PS-SSPM concept

Temperature-insensitive SSPM $Q_{OUT} = DE(V_X) \times N \times C(T) \times V_X(T)$

Excess bias affects detection efficiency and gain

- Breakdown voltage is temperature dependent.
- To maintain a constant excess bias, the applied bias must change with temperature.
- Feed isolated pixel signal from dark events into a peak-hold circuit to monitor changes in the excess bias.

Back-Illuminated SSPMs

Thinned to 50μm and 20μm (thinner chips are in process). Packaged for front and back illumination. DCR same

FF ~100%, detection efficiency is currently high only in red

Comparison of Photodetectors

Device	Gain	Excess Noise	QE (> 350 nm)	Voltage	Rise time	Magnetic sensitivity
SSPM	$\sim 10^{6}$	~ 1.3	~ 30%-50%*	~ 30 V	~ 0.1 ns	No
Si APD	$\sim 10^3$	> 2	~ 60%	>1 KV	1-2 ns	No
Si PIN	1	~ 1	~ 70%	~ 30 V	> 10 ns	No
PMT	$\sim 10^{6}$	~ 1.2	~ 30%	>1 KV	~ 0.1 ns	Yes

RMD

*This value is the 'photon detection efficiency' and 50% represents the projected value based on our designs.

Future Work

- Package and characterize thinner (~ 10 μm) back illuminated SSPMs.
- Characterize imaging and non-image 1 cm² SSPM
- Develop on-chip electronics for pixel conditioning, pulse processing, and data management.
- Characterizing 6 x 6 SSPM array
- Deploy SSPM detectors for integration into nuclear and particle physics experiments running at BNL (calorimetry) and UMass-Lowell (beam monitoring in particle accelerators, α-γ angular correlations and charged particle detection).

