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Extreme Environments and the 
Polarizability of Protons

Goal: Develop photodetectors with gain that 
operate in extreme environments:

Temperatures around a few Kelvin
High magnetic fields of several Tesla
High-helium environments.
Small physical spaces of less than                
1 cm x 1 cm

PMTs will fail if exposed to these types of 
environments, where a solid-state 
photodetector may not.
New class of nuclear physics experiments: 

Look at spin polarizability of nucleons
Spin polarizabilities characterize how 
circularly polarized photons interact with a 
polarized nucleon.
Little is known how circularly polarized 
fields influence polarized protons.

Scatter circularly polarized photons off of 
polarized protons.
HIFROST:

Polarized proton target
NaI detectors are used to measure scattering 
kinematics
Few Tesla
Target at a few milliKelvin

Background Rejection
Target is a hydrocarbon scintillator 
with embedded polarized protons
Rejection of backgrounds is done 
using a coincidence signal

• NaI signal 
• Scintillator signal
• Beam signal

Scintillator will be readout with a 
photodetector
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Polarized Proton Target

A PMT can not be used for the existing target cryostat:  A complete redesign of 
the system would be required.
Mount photodetectors outside the dilution refrigerator: Temperature ~ 3-4 K
Scintillation rests within a transparent vessel
Wave-length shifting fibers (Saint Gobain BCF-92, max. emission 480nm) are use 
to collect the light and transport it to the photodetector.
The design goal is to obtain photon collection efficiencies of approximately 10% 
with an energy resolution of 10%.  
This resolution is necessary to reject backscattered protons freed from 12C atoms 
in comparison to the scatter of free polarized protons.

APD WLS Fiber Quartz Window

BCF-92
WLS Fibers5-cm thick Polarized 

Scint. Poly-styrene Foil

Light capture with wavelength shifters
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GPD Operation at Low Temperatures

Geiger Photodiode (GPD) is an 
avalanche photodiode operated 
beyond the breakdown voltage.
The GPD is the basic building 
block for a solid-state 
photomultiplier.
Doping leads to a low voltage 
breakdown.
Carrier loss should be less of an 
issue.

Typical APD structure is doped to 
reduce excess noise at room 
temperature.
Large gains are achieved at high 
biases (~1000 V).
Carrier loss is a viable explanation 
for loss of QE below 40 K. 

APD at unity gain
Red LED light
Yang et al. NIMA 508, 388 (2003)

p-substrate

n+
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Setup for GPD Evalution

Mounted GPD and SSPM to puck for insertion into 
cryostat at the University of Massachusetts.
Mounted LED and Laser to a viewport on the cryostat 
to inject light into the system.

Puck with 
SSPM and GPD
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GPD Results

Excess noise at low temperatures.
After pulsing effect.
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APD Setup
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Determining Best Diode
Determine the QE, gain, dark noise and excess noise at 4 Kelvin.

QE and Gain measured with a 532 nm LED.
Excess noise is determined by pulsing the LED to collect 
a pulse height distribution.
Best Diode: Type 4.
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Device is at 0V
To measure QE at low temperature, the current at low temperatures  is 
compared to the RT currents.
Rescaled QE to account for possible changes in light transmission. 
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Relative Quantum Efficiency
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IV Curves and Diode Drop
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Breakdown
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Gain
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Pulsed Light

532-nm LED is driven with 
a 20-ns  pulse.
Neutral density filters are 
used to attenuate light 
intensity.
Signal coupled to the 
Amptek CoolFET charge-
sensitive preamplifier.
Used a 20-ns shaping time.
Fed signal into a Amptek
Pocket MCA. 

MCA

Shaping
AmpPreampAPD

Pulse Generator

LED

+ V -

Optical Fiber

Cryostat

Neutral Density Filter
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Response
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Excess Noise
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Readout & Packaging
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Schedule
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Task

Aug. 2011Provide Complete Instrument with Optimized Readout.

May 2011Evaluate Performance in the HIFROST Environment

Mar. 2011Create Robust Coupling Between Target and Photodetector.

Jan. 2011Develop Setup for Testing in the HIFROST Environment

Dec. 2010Develop Package for Low Temperature and High B-Field Operation

Fabricate CMOS Photodetector

Layout and Design Photodetector System

Evaluate Photodetector and Select Optimal Design

Measure Characteristics of Prototype Detectors

Construct Test Apparatus for Evaluation at Low Temperatures

Fabricate CMOS Test Array for Cryogenic Evaluation

Develop Ancillary Readout Electronics

Simulate Heat Constraints for Target Area

Design Proportional Mode Photodetector Elements

End of No-Cost Extension August 2011
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Final Remarks
CMOS Geiger Photodiodes are limited at low 
temperatures.
CMOS APDs are a viable photodetector at low 
temperatures.
Negligible effects from magnetic fields

No drift region
avalanche process within the depletion width ~10 um

Exploring the implementation of a FET coupled 
directly to the APD for signal to noise improvement. 
Potential low-cost device for scientific 
experimentation within a operation regime of

Temperatures (<100 Kelvin)
High Magnetic Fields  (>50 Gauss)
Compact (Die size of 1.5 mm x 1.5 mm) 
Low Voltage (<50 V)
Solid-state: No vacuum tubes- less sensitive to 
environment.
Can be exposed to ambient light while biased for short 
periods without adverse effects.

We have been solicited by scientists regarding this 
instrument for other low temperature nuclear 
experiments.
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