

The Properties of Cryogenic CMOS **Avalanche Photodiodes**

SSPM Detector for Polarized Target Scintillator Readout

Erik Johnson¹

Jie Chen¹, Christopher Stapels¹, Chad Whitney¹, Rory Miskimen², Don Crabb³, Skip Augustine⁴, and James Christian¹

> ¹Radiation Monitoring Devices, Inc., Watertown, MA ²University of Massachusetts, Amherst, MA ³University of Virginia, Charlottesville, VA ⁴Augustine Engineering, Encinitas, CA

www.rmdinc.com A Dynasil Member Company

Reclecton Monitoring Devices, Inc.

Extreme Environments and the Polarizability of Protons

- Goal: Develop photodetectors with gain that operate in extreme environments:
 - Temperatures around a few Kelvin
 - High magnetic fields of several Tesla
 - High-helium environments.
 - Small physical spaces of less than 1 cm x 1 cm
- PMTs will fail if exposed to these types of environments, where a solid-state photodetector may not.
- > New class of nuclear physics experiments:
 - Look at spin polarizability of nucleons
 - Spin polarizabilities characterize how circularly polarized photons interact with a polarized nucleon.
 - Little is known how circularly polarized fields influence polarized protons.
- Scatter circularly polarized photons off of polarized protons.
- > HIFROST:
 - Polarized proton target
 - Nal detectors are used to measure scattering kinematics
 - Few Tesla
 - Target at a few milliKelvin

www.rmdinc.com

A Dynasil Member Company

- Background Rejection
 - Target is a hydrocarbon scintillator with embedded polarized protons
 - Rejection of backgrounds is done using a coincidence signal
 - Nal signal
 - Scintillator signal
 - Beam signal
 - Scintillator will be readout with a photodetector

Polarized Proton Target

Light capture with wavelength shifters

- A PMT can not be used for the existing target cryostat: A complete redesign of the system would be required.
- Mount photodetectors outside the dilution refrigerator: Temperature ~ 3-4 K
- Scintillation rests within a transparent vessel
- Wave-length shifting fibers (Saint Gobain BCF-92, max. emission 480nm) are use to collect the light and transport it to the photodetector.
- The design goal is to obtain photon collection efficiencies of approximately 10% with an energy resolution of 10%.
- This resolution is necessary to reject backscattered protons freed from ¹²C atoms in comparison to the scatter of free polarized protons.

GPD Operation at Low Temperatures

- Typical APD structure is doped to reduce excess noise at room temperature.
- Large gains are achieved at high biases (~1000 V).
- Carrier loss is a viable explanation for loss of QE below 40 K.

- Geiger Photodiode (GPD) is an avalanche photodiode operated beyond the breakdown voltage.
- The GPD is the basic building block for a solid-state photomultiplier.
- Doping leads to a low voltage breakdown.
- Carrier loss should be less of an issue.

Setup for GPD Evalution

- Mounted GPD and SSPM to puck for insertion into cryostat at the University of Massachusetts.
- Mounted LED and Laser to a viewport on the cryostat to inject light into the system.

GPD Results

APD Setup

www.rmdinc.com A Dynasil Member Company

Rediation Monitoring Devices, Inc.

Determining Best Diode

Determine the QE, gain, dark noise and excess noise at 4 Kelvin.

- QE and Gain measured with a 532 nm LED.
- Excess noise is determined by pulsing the LED to collect a pulse height distribution.
- Best Diode: Type 4.

- > Device is at 0V
- To measure QE at low temperature, the current at low temperatures is compared to the RT currents.

Recliedion Montiorin 2 Devices,

Rescaled QE to account for possible changes in light transmission.

Relative Quantum Efficiency

IV Curves and Diode Drop

A Dynasil Member Company

Recletion Montiorin; Devices,

Breakdown

> Strong dependence on temperature.

Pulsed Light

- 532-nm LED is driven with a 20-ns pulse.
- Neutral density filters are used to attenuate light intensity.
- Signal coupled to the Amptek CoolFET chargesensitive preamplifier.
- Used a 20-ns shaping time.
- Fed signal into a Amptek Pocket MCA.

Response

- Temperature = 5 K
- Bias = 31.25 V: Gain ~20
- Changed NDF to vary light intensity.

Readout & Packaging

Schedule

<u>Task</u>	Percent Complete	<u>To Be</u> Completed
Design Proportional Mode Photodetector Elements	100%	
Simulate Heat Constraints for Target Area	100%	
Develop Ancillary Readout Electronics	100%	
Fabricate CMOS Test Array for Cryogenic Evaluation	100%	
Construct Test Apparatus for Evaluation at Low Temperatures	100%	
Measure Characteristics of Prototype Detectors	100%	
Evaluate Photodetector and Select Optimal Design	100%	
Layout and Design Photodetector System	100%	
Fabricate CMOS Photodetector	100%	
Develop Package for Low Temperature and High B-Field Operation	20%	Dec. 2010
Develop Setup for Testing in the HIFROST Environment	0%	Jan. 2011
Create Robust Coupling Between Target and Photodetector.	20%	Mar. 2011
Evaluate Performance in the HIFROST Environment	0%	May 2011
Provide Complete Instrument with Optimized Readout.	10%	Aug. 2011

End of No-Cost Extension August 2011

Final Remarks

- CMOS Geiger Photodiodes are limited at low temperatures.
- CMOS APDs are a viable photodetector at low temperatures.

> Negligible effects from magnetic fields

- No drift region
- avalanche process within the depletion width ~10 um
- Exploring the implementation of a FET coupled directly to the APD for signal to noise improvement.
- Potential low-cost device for scientific experimentation within a operation regime of
 - Temperatures (<100 Kelvin)</p>
 - High Magnetic Fields (>50 Gauss)
 - Compact (Die size of 1.5 mm x 1.5 mm)
 - Low Voltage (<50 V)</p>
 - Solid-state: No vacuum tubes- less sensitive to environment.
 - Can be exposed to ambient light while biased for short periods without adverse effects.
- We have been solicited by scientists regarding this instrument for other low temperature nuclear experiments.

