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Cost for Doing Physics
Scintillator Readout
Traditional

♦ PMT
♦ HV 
♦ Shaping Amp
♦ Logic
♦ ADC

Integrated 
♦ SSPM
♦ LV
♦ Insensitive to fringe B fields and He 

gas.
Cost Reduction

♦ minimizing the number of modular 
components.

♦ Reduce cabling
♦ Reduce need for Fastbus or VME 

modules
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Cost Analysis
PMT Readout

♦ Cables.
♦ VME, CAMAC, HV Crates
♦ Signal processing 

modules.
♦ HV modules.

SSPM with Integrated 
Electronics

♦ On-chip processing
♦ External 250 MSPS 12-bit 

ADC
♦ External DC-DC Converter
♦ +5V Supply
♦ Front End FGPA

Estimated a cost reduction 
of a factor of two. 
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Experimental Setup
with

11 GeV Photon Tagger

Bremst. Rad.

First C-Dipole

Second C-Dipole

Pb Shielding Wall

LH/LHe Targets
PbWO Calorimeter

with
Veto scint.

Tagger Focal Plane
Detectors

Physics Overview

An upgrade at Jefferson Laboratories 
allows for studies of the η and η’ life times. 

♦ η and η’ are produced by the Primakoff
Effect

• 10-GeV photons incident on Liquid Hydrogen
• Photon and virtual photon interaction yields 

neutral pseudo-scalars, such as η and η’.
♦ They decay into two photons with energies 

> 1 GeV.
♦ The PRIMEX experiment will house a 

PbWO4 calorimeter for measuring the total 
energy of the decay photons to within 1%.

Provide direct measurements at low energies of 
parameters of Quantum Chromodynamics (QCD)

♦ Low energy < GeV (proton mass ≈ 1 GeV)
♦ The measurement of the π0 life time provides evidence that 

the QCD theories are valid at these low energies.
♦ It provide additional support for QCD at these low energies, 

the η and η’ lifetimes are equally important.
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11 GeV Photon Tagger

Bremst. Rad.

First C-Dipole
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LH/LHe Targets
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Tagger Focal Plane
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PbWO4
Cal.
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Targets
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Experimental Setup
w/ 11-GeV Photon Trig.
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The PRIMEX PbWO4 Calorimeter

Planned Calorimeter
♦ 60 x 60 element array of PbWO4

♦ <1% energy resolution for 4.5 GeV
♦ ~ 1 mm position resolution
♦ 2.125 x 2.125 x 21.5 cm3

♦ PbWO4 Parameters
• Fast Decay: ~10 ns
• Density: 8.3 g/cm3

• Light Yield at 0 ºC: 50-300 γ/MeV.

Detecting two high energy gamma rays
♦ Scattering along scintillator
♦ Scattering radially
♦ Bundle 5x5 clusters of scintillator
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Building the Calorimeter

Segment components for construction.
Integrate electronics at front-end.

PbWO Crystals
5x5 Array

SSPM
Integrated Signal 

Processing

Interface
ADC

≥250MSPS

FPGA 
DSP

Position
Time

Pulse Height
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CMOS SSPM Primer
Low-cost, compact, high gain 
photodetector:

♦ Active dosimeters/ area monitors
• Gamma-ray
• Charged-particle
• Neutrons

♦ Spectrometry
♦ Positioning and Imaging
♦ PET, SPECT, Optical tomography

Fabricate photodetector using 
commercially available CMOS 
process.
Low cost
Reproducible
Integrated signal processing
Array of photodiodes with large 
signal gain associated with single 
optical photons.
Proportional response to incident 
light intensity.
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CMOS SSPMs
Large scale detector designs- simple 
connection, single instrument, lower cost.
Development for high performance 
instruments, such as large calorimeter 
arrays. 
A complete understanding of the SSPM 
behavior will allow for optimal design. 

Large-Area SSPM: 
~50k, 30-micron pixels
49% Fill Factor

1 cm

1 cm

Small-area SSPM: 
~2k, 50-micron pixels
61% Fill Factor

Large Gain: ~106 (approx. Vx•Cjn)
Room Temperature Breakdown: 26.9 V ± 0.2 V
Breakdown Temperature Coefficient: 50 mV/°C
Recharge time: 100ns with 50 Ω termination.

Prototype SSPM 
designs.
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Energy Resolution
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To compare with a PMT, LYSO is a 
good match for both photodetectors.

The large-area SSPM is a viable 
replacement for a PMT.

To optimize scintillation detector performance, we
need to examine the signal and noise terms
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Detection Efficiency
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Detection efficiency is a product of the QE and the 
Geiger probability.
Difference in ionization rates between holes and 
electrons.
There may be differences in the Geiger avalanche 
probability, Pg, as a function of wavelength.  
Many scintillation materials emit in the blue.
Small changes in the DE for blue light can result in a 
significant improvement in the signal.
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Dark Current
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Dark current is 
temperature dependent. The dark current was measured on a sample of 

large-area SSPMs and converted into a dark count 
rate. 
The product of the dark count rate and the 
integration time gives the contribution to the noise.
The dark count rate follows a Maxwell-Boltzmann
distribution. 
Low temperature and fast integration times can be 
used to mitigate dark noise. 
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Crosstalk and afterpulses can be 
considered as gain terms. 
We can define an excess noise factor 
associated with these gain terms.
It is the fluctuations in gain that is the 
key factor we are interested in 
quantifying.
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Crosstalk Characterization
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Use a tail pulse 
generator.

Collect dark events. 

Fit and bin data.
Look at events within 

a small window.
Generate dark spectrum 

and bin data.
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Crosstalk is a contributor to excess noise.
Tail Pulse Generator- Simple but dirty.
Trace analysis- computationally intensive.

Bin spectra into groups 
representing the number of 
triggered pixels. 
Calculate the expected mean and 
variance for dark events without 
excess noise.
Determine the mean and variance 
of the measured spectrum.

Du et al., NIMA, v. 596, p. 396-401, (2008)
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Excess Noise Factor: Short Integration
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For short integration times crosstalk is the 
only excess noise term.
Third method to measure crosstalk is to 
measure count rates. 
TPG and ADC sample methods are similar.
Count rate method is close but is naturally 
high due to lack of accounting for afterpulses
and dark counts. 

Multiplier Excess Noise 
Factor
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Excess Noise Factor with Integration
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Afterpulsing and crosstalk are correlated. 
Afterpulsing is highly dependent on the integration 
time. 

♦ Charge output from pixel is dependent on the excess 
bias.

♦ Early afterpulses will not generate as much charge 
since the pixel is in a recharging process.

♦ After some point in time, the time correlation between 
a pulse and afterpulses becomes random again. 

Consider the trace analysis to measure a 
comprehensive gain multiplier and excess noise 
terms. 
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Non-linear Effects
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The large-area SSPM benefit from 
large pixel numbers.
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Noise from binomial statistics near saturation
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Noise terms and τ−scaling

Resolution from SSPM: Other factors are needed to get a complete
energy resolution.
Bright and fast scintillation best: long integration times increase noise

♦ From DCR
♦ From FAP (generally small compared to FXT)

Relative magnitude of the terms (1 SSPM): 
♦ <nt> ~ 1-20k
♦ <ndark> ~ 10-50
♦ Fsspm ~ 2
♦ nttl ~ 50k
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Estimating the Energy Resolution
Compile each signal and noise term discussed for the large-area SSPM.
Calculated the expected energy resolution for the large-area SSPM.
Focus is on short integration times only.  (No after pulsing.)
Specific Application: High Energy Gamma Ray Calorimeter

♦ Used a 10 ns integration time to estimate dark noise.
♦ Operation of the device is at 0 °C. 
♦ Effective quantum efficiency is 38%. 
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Design Optimization

Single pass- using only the geometrical efficiency
1 SSPM per Crystal: ~11% Geo. Eff.
2 SSPM per Crystal: ~22% Geo. Eff.
Light Yield of PbWO4 may be from 40-60 p/MeV - Annenkov, Korzhik, Lecoq, NIMA 490, 
30-50 (2002)
Consider optics to improve light collection. (Estimated with 50% increase in light 
collection.)
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Alternative SSPM Design

Alternative SSPM design has different diode 
structures.  
QE is larger over a larger bandwidth, improving 
DE. 
Using identical performance characteristics as 
existing device- energy resolution improves.
This design has shown to have larger noise 
characteristics, but a through analysis is needed 
to determine if there are any improvements in the 
signal to noise.  
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Temperature Stability
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The response of the device is linear 
with an applied excess bias. 

Changes in the breakdown voltage affect the detector 
response.
The size of these effects are dependent on the excess 
bias and the temperature coefficient on the breakdown 
voltage. 
Use on-chip circuitry to monitor the excess bias.
Use this signal for a feedback loop to maintain a 
constant excess bias.

3 mm
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Next Generation of CMOS SSPMs
Low Cost SSPMs can be achieved using a CMOS process with 
large features- Low Cost per Area.
How do we improve the performance?
Smaller CMOS Process: Smaller pixels are possible
♦ Improve dynamic range of a linear response.
♦ Reduce hot carrier emission
♦ Reduce after pulsing
♦ Reduce fill factor but operate at a higher bias to maintain DE.
♦ Smaller dark current.
♦ Is this viable:

• How does the hot carrier emission change?
• What is the final signal to noise at a higher bias?
• Are there circuits that can be used to reduce noise terms?

♦ Integration of higher-level circuits (i.e. ADC) takes up less real-
estate and should perform faster. 
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ADC Front End Assembly

Sensor head will be directly coupled to the PbWO4 Crystal.
Area is roughly 2 cm x 2 cm.  
Prototype consists of 1 SSPM, Amplifier, ADC, and DC-DC 
supply.
There are a number of methods for monitoring gain using 
circuitry on the silicon die. 
Plan to evaluate this instrument extensively with PbWO4 
Crystals and high energy gamma rays. 
The prototype has recently been assembled for testing.

+1V

Clock

Gain Monitor 
Signals

Com to DC-DC 
Supply

ADC Data+5V

OutputInput
Sensor Head
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Data Capture for Characterization
Input Baseline

Correction
Trigger Timing Output

Waveform Output

Energy
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Schedule

50%

0%

0%

50%

0%

0%

0%

50%

100%

70%

100%

Percent 
Complete

To Be 
Completed

Task

Aug 2011Provide Phase-II Progress Reports

Jul 2011Evaluate Cluster Module at an Accelerator Facility

Jun 2011Construct a PRIMEX Calorimeter Cluster Module

Jun 2011Design Interconnect Board for Digitization

Jun 2011Construct CMOS SSPMs for Calorimeter Application

Feb 2011Design and Simulate CMOS SSPMs with Integrated Signal Processing

Nov 2010Evaluate Prototypes with PbWO4 Scintillators

Sep 2010Construct an Apparatus for High-Energy Gamma Interactions

Design and Construct Prototypes for a Large Area SSPM

Dec 2010Simulate Detector Modules for Optimal Design

Evaluate Existing CMOS Designs

End of Program August 2011
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Summary
A Large-Area SSPM has been fabricated for implementation for 
nuclear physics applications.
The existing device has been studied extensively, and we are 
looking at additional options for improving the energy resolution 
of the calorimeter.
The SSPM has been mounted on a chip-scale substrate and will 
be coupled to a small PCB with an fast ADC. 
We most of the components and software in place and will be 
expecting to evaluate a single PbWO element within the next 
few months.  
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