

Solid-State Photomultiplier with Integrated Front End Electronics

Optical Detector with Integrated ADC for Digital Readout

<u>RMD Inc., Watertown, MA:</u> *E.B. Johnson*, C. Stapels, X. J. Chen, C. Whitney, E. Chapman, G. Alberghini, J.F. Christian

Augustine Engineering, Encinitas, CA: F. Augustine

University of Massachusetts, Amherst, MA: R. Miskimen, R. Rines

DSL Consulting, Belchertown, MA: D. Lydon

www.rmdinc.com

Redicton Monitorin: Devices, Inc.

a Dynasil member company

Cost for Doing Physics

- Scintillator Readout
- Traditional
 - ◆ PMT
 - ♦ HV
 - Shaping Amp
 - ♦ Logic
 - ♦ ADC
- > Integrated
 - ♦ SSPM
 - ♦ LV
 - Insensitive to fringe B fields and He gas.
- Cost Reduction
 - minimizing the number of modular components.
 - Reduce cabling
 - Reduce need for Fastbus or VME modules

Cost Analysis

Traditional Scintillator Detector

Discriminator

- PMT Readout
 - Cables.
 - ◆ VME, CAMAC, HV Crates
 - Signal processing modules.
 - HV modules.
- SSPM with Integrated Electronics
 - On-chip processing
 - External 250 MSPS 12-bit ADC
 - External DC-DC Converter
 - ♦ +5V Supply
 - ♦ Front End FGPA
- Estimated a cost reduction of a factor of two.

Physics Overview

- Provide direct measurements at low energies of parameters of Quantum Chromodynamics (QCD)
 - Low energy < GeV (proton mass \approx 1 GeV)
 - The measurement of the π^0 life time provides evidence that the QCD theories are valid at these low energies.
 - It provide additional support for QCD at these low energies, the η and η' lifetimes are equally important
- An upgrade at Jefferson Laboratories allows for studies of the η and η' life ti
 - η and η' are produced by the Primako Effect
 - 10-GeV photons incident on Liquid Hyd
 - Photon and virtual photon interaction yin neutral pseudo-scalars, such as η and η
 - They decay into two photons with ener
 > 1 GeV.
 - The PRIMEX experiment will house a PbWO₄ calorimeter for measuring the energy of the decay photons to within

www.rmdinc.com a Dynasil member company

Trig. FP Detectors

1st C-Dipole

Bremst.

■ Rad

4

The PRIMEX PbWO₄ Calorimeter

- Planned Calorimeter
 - ♦ 60 x 60 element array of PbWO₄
 - ♦ <1% energy resolution for 4.5 GeV</p>
 - ~ 1 mm position resolution
 - ♦ 2.125 x 2.125 x 21.5 cm³
 - PbWO₄ Parameters
 - Fast Decay: ~10 ns
 - Density: 8.3 g/cm³
 - Light Yield at 0 °C: 50-300 γ/MeV.
- Detecting two high energy gamma rays
 - Scattering along scintillator
 - Scattering radially
 - Bundle 5x5 clusters of scintillator

Building the Calorimeter

Rededon Montorin: Devices Inc.

CMOS SSPM Primer

- Low-cost, compact, high gain photodetector:
 - Active dosimeters/ area monitors
 - Gamma-ray
 - Charged-particle
 - Neutrons
 - Spectrometry
 - Positioning and Imaging
 - PET, SPECT, Optical tomography
- Fabricate photodetector using commercially available CMOS process.
- Low cost
- Reproducible
- Integrated signal processing
- Array of photodiodes with large signal gain associated with single optical photons.
- Proportional response to incident light intensity.

CMOS SSPMs

- Large scale detector designs- simple \triangleright connection, single instrument, lower cost.
- Development for high performance \geq instruments, such as large calorimeter arrays.
- A complete understanding of the SSPM behavior will allow for optimal design.

Large-Area SSPM:

49% Fill Factor

~50k, 30-micron pixels

Energy Resolution

To optimize scintillation detector performance, we need to examine the signal and noise terms

Detection Efficiency

- Detection efficiency is a product of the QE and the Geiger probability.
- Difference in ionization rates between holes and electrons.
- There may be differences in the Geiger avalanche probability, P_q , as a function of wavelength.
- Many scintillation materials emit in the blue.
- Small changes in the DE for blue light can result in a significant improvement in the signal.

- The dark *current* was measured on a sample of large-area SSPMs and converted into a dark count rate.
- The product of the dark count rate and the integration time gives the contribution to the noise.
- The dark count rate follows a Maxwell-Boltzmann distribution.
- Low temperature and fast integration times can be used to mitigate dark noise.

Excess Noise Terms

Spacing	Sizo	Quadrant
Spacing	Size	Quaurant
Close	Large	Q2
Close	Small	Q1
Far	Large	Q3
Far	Small	Q4

 $\boldsymbol{q}_{SSPM} = \boldsymbol{M}_{A} \cdot \boldsymbol{M}_{x} \cdot \boldsymbol{G}(\boldsymbol{V}_{x}) \cdot \boldsymbol{n}_{t} + \boldsymbol{q}_{0}$

Recitedian trianicarin's Devices

- Crosstalk and afterpulses can be considered as gain terms.
- We can define an excess noise factor associated with these gain terms.
- It is the fluctuations in gain that is the key factor we are interested in quantifying.

Crosstalk Characterization

- Crosstalk is a contributor to excess noise.
- Tail Pulse Generator- Simple but dirty.
- Trace analysis- computationally intensive.

Use a tail pulse generator. Collect dark events. $P(\mu,0) = \left(1 - \frac{\mu}{n_{ttl}}\right)^{n_{ttl}}$

0.12

0.10

Dulse Height (V) 0.04 0.04

0.02

0.00

20n

- Bin spectra into groups representing the number of triggered pixels.
- Calculate the expected mean and \triangleright variance for dark events without excess noise.
- Determine the mean and variance \succ of the measured spectrum.

Du et al., NIMA, v. 596, p. 396-401, (2008)

Generate dark spectrum and bin data.

www.rmdinc.com a Dynasil member company

Time (s)

60n

80n

100n

Look at events within

a small window.

Excess Noise Factor: Short Integration

Multiplier

 $M = \frac{\mu_{meas}}{\mu_{meas}}$

 μ_{dark}

- For short integration times crosstalk is the only excess noise term.
- Third method to measure crosstalk is to measure count rates.
- TPG and ADC sample methods are similar.
- Count rate method is close but is naturally high due to lack of accounting for afterpulses and dark counts.

a Dynasil member company

Excess Noise

Factor

 $F = \frac{\sigma_{meas}^2}{1}$

 $\sigma^2_{\scriptscriptstyle dark}$

Excess Noise Factor with Integration

- > Afterpulsing and crosstalk are correlated.
- Afterpulsing is highly dependent on the integration time.
 - Charge output from pixel is dependent on the excess bias.
 - Early afterpulses will not generate as much charge since the pixel is in a recharging process.
 - After some point in time, the time correlation between a pulse and afterpulses becomes random again.
- Consider the trace analysis to measure a comprehensive gain multiplier and excess noise terms.

Noise from binomial statistics near saturation

www.rmdinc.com

a Dynasil member company

Noise terms and τ–scaling

$$\left(\frac{\sigma_E}{E}\right)_{det}^2 = \frac{F_{SSPM}\left[\left\langle n_t \right\rangle \left(1 - \frac{\left\langle n_t \right\rangle}{n_{ttl}}\right) + \left\langle n_{dark} \right\rangle\right]}{\left(-\ln\left(1 - \frac{\left\langle n_t \right\rangle}{n_{ttl}}\right) \cdot \left(n_{ttl} - \left\langle n_t \right\rangle\right)\right)^2}$$

- Resolution from SSPM: Other factors are needed to get a complete energy resolution.
- Bright and fast scintillation best: long integration times increase noise
 - From DCR
 - From F_{AP} (generally small compared to F_{XT})
- Relative magnitude of the terms (1 SSPM):
 - $< n_t > \sim 1-20k$
 - <n_{dark}> ~ 10-50
 - ♦ F_{sspm} ~ 2
 - $n_{ttl} \sim 50k$

Estimating the Energy Resolution

- Compile each signal and noise term discussed for the large-area SSPM.
- Calculated the expected energy resolution for the large-area SSPM.
- Focus is on short integration times only. (No after pulsing.)
- Specific Application: High Energy Gamma Ray Calorimeter
 - Used a 10 ns integration time to estimate dark noise.
 - Operation of the device is at 0 °C.
 - Effective quantum efficiency is 38%.

- Single pass- using only the geometrical efficiency \geq
- 1 SSPM per Crystal: ~11% Geo. Eff. \triangleright
- 2 SSPM per Crystal: ~22% Geo. Eff. \succ
- \triangleright Light Yield of PbWO₄ may be from 40-60 p/MeV - Annenkov, Korzhik, Lecoq, NIMA 490, 30-50 (2002)
- Consider optics to improve light collection. (Estimated with 50% increase in light \triangleright collection.)

www.rmdinc.com

a Dynasil member company

Excess Bias (V)

Alternative SSPM Design

- Alternative SSPM design has different diode structures.
- QE is larger over a larger bandwidth, improving DE.
- Using identical performance characteristics as existing device- energy resolution improves.
- This design has shown to have larger noise characteristics, but a through analysis is needed to determine if there are any improvements in the signal to noise.

www.rmdinc.com

a Dynasil member company

Temperature Stability

- Changes in the breakdown voltage affect the detector response.
- The size of these effects are dependent on the excess bias and the temperature coefficient on the breakdown voltage.
- ➢ Use on-chip circuitry to monitor the excess bias.
- Use this signal for a feedback loop to maintain a constant excess bias.

4300-pixel SSPM with integrated circuitry

The response of the device is linear with an applied excess bias.

For a constant bias voltage, the excess bias is inversely proportional to the temperature.

Next Generation of CMOS SSPMs

- Low Cost SSPMs can be achieved using a CMOS process with large features- Low Cost per Area.
- ➢ How do we improve the performance?
- Smaller CMOS Process: Smaller pixels are possible
 - Improve dynamic range of a linear response.
 - Reduce hot carrier emission
 - Reduce after pulsing
 - Reduce fill factor but operate at a higher bias to maintain DE.
 - Smaller dark current.
 - Is this viable:
 - How does the hot carrier emission change?
 - What is the final signal to noise at a higher bias?
 - Are there circuits that can be used to reduce noise terms?
 - Integration of higher-level circuits (i.e. ADC) takes up less realestate and should perform faster.

ADC Front End Assembly

Sensor Head

	<u>Input</u>	<u>Output</u>	
	+5V	ADC Data	
ection PGA Board	Com to DC-DC Supply	Gain Monitor Signals	
	Clock		
	+1V		

- > Sensor head will be directly coupled to the $PbWO_4$ Crystal.
- > Area is roughly 2 cm x 2 cm.
- Prototype consists of 1 SSPM, Amplifier, ADC, and DC-DC supply.
- There are a number of methods for monitoring gain using circuitry on the silicon die.
- Plan to evaluate this instrument extensively with PbWO₄ Crystals and high energy gamma rays.
- > The prototype has recently been assembled for testing.

RMD Rediction Wontsoring Devices, Inc.

Data Capture for Characterization

Schedule

<u>Task</u>	Percent Complete	<u>To Be</u> Completed
Evaluate Existing CMOS Designs	100%	
Simulate Detector Modules for Optimal Design	70%	Dec 2010
Design and Construct Prototypes for a Large Area SSPM	100%	
Construct an Apparatus for High-Energy Gamma Interactions	50%	Sep 2010
Evaluate Prototypes with PbWO4 Scintillators	0%	Nov 2010
Design and Simulate CMOS SSPMs with Integrated Signal Processing	0%	Feb 2011
Construct CMOS SSPMs for Calorimeter Application	0%	Jun 2011
Design Interconnect Board for Digitization	50%	Jun 2011
Construct a PRIMEX Calorimeter Cluster Module	0%	Jun 2011
Evaluate Cluster Module at an Accelerator Facility	0%	Jul 2011
Provide Phase-II Progress Reports	50%	Aug 2011

End of Program August 2011

Summary

- A Large-Area SSPM has been fabricated for implementation for nuclear physics applications.
- The existing device has been studied extensively, and we are looking at additional options for improving the energy resolution of the calorimeter.
- The SSPM has been mounted on a chip-scale substrate and will be coupled to a small PCB with an fast ADC.
- We most of the components and software in place and will be expecting to evaluate a single PbWO element within the next few months.

