Charged Fluid Centrifuges for Separation of Large Quantities of Isotopes

> Alfred Y. Wong, Nonlinear Ion Dynamics, LLC

> > October 25, 2011

Liquid Plasma

New generation of Liquid Centrifuge Separators (LCS) for stable and unstable isotopes.

- 1. Same principle of ion-neutral coupling,
 - Inherent population of ions in liquid form and the absence of recombination. No need to continue ionization.
 - Low temperatures and high densities. Liquid allows internal cooling.
- 4. Large quantities and low-cost production require such efficiency.

Theory

Plasma and neutral gas as single conducting fluid:

$$\begin{aligned} \frac{\partial n}{\partial t} + \nabla \cdot n\vec{v} &= 0\\ mn\left[\frac{\partial \vec{v}}{\partial t} + (v \cdot \nabla)\vec{v}\right] &= -\nabla p + \vec{j} \times \vec{B} + \eta \nabla^2 \vec{v} \end{aligned}$$

Under steady state in cylindrical coordinates:

Radial Direction
$$-\nabla p + \frac{nmv_{\Theta}^2}{r} = 0$$
 gives $n = n_o EXP \left[\frac{\omega^2 r^2 m}{kT}\right]$

where $\omega = \text{rotation velocity}$

In two isotopes $(\eta_1, m_1, \eta_2, m_2)$ of a given element, the enrichment factor q can be defined as:

$$q(r) = \frac{\frac{N_2(r)}{N_2(r=0)}}{\frac{N_1(r)}{N_1(r=0)}} - 1$$
$$= EXP \left[\frac{\omega^2 r^2 \Delta M}{2kT}\right] - 1$$

Exponential dependence was confirmed experimentally.

Taking V_{Θ} component $(\eta \nabla^2 \vec{v}) = j_r B$

Balance of q viscous drag with j x B drive

$$\eta \left[\frac{\partial V_{\Theta}}{\partial r^2} + \frac{1}{r} \frac{\partial V_{\Theta}}{\partial r} - \frac{V_{\Theta}}{r^2} \right] = \frac{IB}{2\pi rL}$$

Experiments

II. Spectroscopic measurements show that ions and neutrals rotate and expand radially in the same manner.

Plasma Rotation Videos

Low Current

High Current

Cu metallic vapor released from outer electrode by Ar sputtering

Ne background 1 torr and Ar Flow rate: 500 CCM

Fluid Isotope Separator Centrifuge

Experiments

Cross-sectional Collection (CS)

 $F_z = J_r x B_{\theta}$

Cross-sectional Collection Results

Front view of Cu Deposition Ring Structure from actual experiment

Analysis slice from sample showing Cu-65 abundance vs. radius

Comparison between conventional and FIS centrifuges

	Conventional Centrifuge	Fluid Isotope Separator	Fluid Isotope Separator
		(Liquid)	(Gas)
Radius (cm)	5	30	20
Height (cm)	400	25	25
Volume (cm ³)	3x10 ⁴	7 x 10 ⁴	3 x 10 ⁴
Rotation rate (rps)	600	550 - 1000	1000 – 10,000
Relative centrifugal force (a = 980 cm/s ²)	6.6 x 10 ⁴	3.6 x 10 ⁵ - 1. 2 x 10 ⁶	3 x 10 ⁶
Density (n/cm ³)	10 ¹⁴	10 ²²	1017
Temperature (K)	300	313	1425
Pressure (mTorr)	100	7.60x10 ⁵	4000
Outer cylinder	Rotating	Stationary	Stationary
Cascade units	>1000	1	1
Drive	Surface	Body	Body
Rotating mass (g)	0.005	70,000	1

Throughput Summary

	Mechanical Centrifuge	Fluid isotope separator (Liquid)	Fluid Isotope Separator (Gas)
Throughput flow rate (mg/s)	0.01 (estimate)	4.7	1
Throughput flow rate(g/hour)	0.036	16.9	3.6
Separative Factor	1.09 (estimate)	2.24	2.4

device

A8, table-tep ion boom accolorater

Figure 33. The energy of control and iso beam out go up to 39 N of the isombardment of a suble isotope.

NID Research & Development Center

NID has more than 20,000 sq ft of research space at its Valley Research Center (VRC). VRC is located 19 miles north of Los Angeles, California.

Integrated Spin System (ISS)

Experimental Chambers for diagnostics and engineering

Experimental observation:

Viscous drag is dominant at outer boundary

Dimensional Analysis

$$\eta \frac{V_{\Theta}}{(0.1r_o)^2} \approx \frac{IB}{2\pi rL} \Rightarrow V_{\Theta} = \frac{IB(0.1r_o)^2}{2\pi r_o L\eta}$$
$$V_{\Theta} = \omega r_o = \frac{IB[10^{-2}r_o^2]}{2\pi r_o L\eta} = \frac{10^{-2}IB}{2\pi L\eta}r_o$$
$$= \frac{10^{-2}IB}{2\pi L\eta} = \frac{10^{-2}40A(1.3T)}{2\pi (0.1m)(3.3 \times 10^{-4})}/s = 2.8 \times 10^3/s$$
$$f = 437Hz$$

Viscosity for typical gas $\eta = 3.3 \times 10^{-4} \frac{kg}{m \cdot s}$

Experimentally observed rotation rate:

 $\frac{f_{Experimental} \approx 340 - 500 Hz}{f_{THEORY} \sim 437 Hz}$