High-Speed, Multi-Channel Detector Readout Electronics for Fast Radiation Detectors

Project PI: Wolfgang Hennig DOE Grant: DE-FG02-08ER84981

XIA LLC, 31057 Genstar Rd, Hayward, CA 94544

Outline

- Company background
- Readout electronics requirements
- Pixie-500
 - Prototype performance
- Pixie-500e
 - Architecture
 - Improvements
 - Development

XIA LLC

DXP xMAP

DXP Mercury

DGF Pixie-4

DGF Pixie-16

DGF Polaris

Ultra-LO 1800

PhosWatch

DXP Mercury-4-OEM

DXP Saturn

DX

μDXP

Detector signals

Coaxial HPGe

- Energy resolution ~0.14% at 1333 keV
- Rise-time ~50 ns
- Inorganic scintillators + PMT
 - Energy resolution ~3–7%
 - Rise time ~ 10 ns
- Organic scintillators + PMT
 - Fast risetime, <10ns
 - Pulse-shape discrimination

Digital Spectrometer Applications

HPGe

- Energy resolution
- Segmented, strip detectors
- Multiple-site analysis
- Fast scintillators
 - High throughput
 - Low trigger threshold
 - Pulse-shape analysis
- Flexible coincidence schemes

Digital Spectrometer Applications

- Pulse-height analysis
 - Slow filter: spectroscopy
 - Pulse-shape analysis
- Timing measurements
 - Fast filter for trigger
 - Waveform capture
- Multiple channels
 - Event hit pattern
 - Trigger distribution
- Custom firmware

Digital Spectrometer Applications

Compact clover readout system with single Pixie-4

HPGe detector array, gamma ray tracking with multiple Pixie-16

P500 prototype

- Pixie-4 (75 MSPS, 14-bit ADC) \rightarrow P500 (250 MSPS and 500 MSPS, 12-bit ADC)
- ADC to FPGA data flow
- Performance tests

Energy Resolution

- HPGe, comparable to Pixie-4 (~0.2% FWHM at 1.33 MeV)
- No penalty with scintillators

Timing

- 20–40 ps from pulser
- 23–100 ps from LaBr3 detector

- Architecture changes
- Firmware development
- Host communication
- User code

- Gain and Offset adjust
- ADC clock control
- 500 MSPS, 12-bit ADC
 - ADC: 12 LVDS lines at 500 MHz
 - FPGA: 125 MHz

- Virtex-4
- De-serialize ADC stream
 - Trigger filter
- Energy filter
- Pile-up inspector
- Hit pattern, coincidence

 From 75 MHz, 16-bit fixed point to 300 MHz ,32-bit floating point DSP

- Advanced pulse analysis algorithms
- User code from C, asm

- PCI-Express, 4-lane bridge GN4124
- I/O:
 - From 132 MB/s (reality: 80 MB/s)
 - To 250 MB/s (1 lane) (measured 117 MB/s, 1 lane, at half clock rate)
- x4 with all lanes
- PCIe v.3: 1000 MB/s

Pulse Shape Analysis

BC-404/Csl phoswich

- Combined events:
 - Electrons (plastic)
 - Gamma-rays (Csl)
- Better event discrimination
- Better detector sensitivity

LaBr₃/nTOF

- Pulsed neutron source
- Coincidence with machine trigger
- Energy/Time-stamp for all events (+waveform)
- n-TOF with Stilbene

LaBr₃/nTOF

Timing and Energy signals from LaBr3 with target and without target.

User Interface

- UI

- C-library API
 - Boot
 - Settings
 - Run control
 - Data readout
- IgorPro
- ROOT
- Custom FPGA firmware
- Custom DSP code (C, asm)

User Interface

Outlook

- Implemented high-speed ADC and FPGA communication
- ADC options
 - 12-bit 500 MSPS, 14-bit 400 MSPS...
- Work resulted in other products: Pixie-16 with 12, 14, 16-bit, 250–500 MSPS
- Advanced Firmware development