
CWS4DB: A Customizable Web Service
for Efficient Access to Distributedfor Efficient Access to Distributed

Nuclear Physics Relational Databases
FY 2008 SBIR Phase II Proposal Award Number: DE-FG02-07ER84757FY 2008 SBIR Phase II Proposal Award Number: DE FG02 07ER84757

Dr. Mark L. Green, PI
Tech-X Corporation, Buffalo Office

H d t B ld CO

p ,
Systems Integration Group

Headquarters Boulder, CO
Buffalo, NY

Tech-X Orbiter ProjectTech-X Orbiter Project

• Orbiter is an end-to-end framework
delivering fast and secure solutions throughdelivering fast and secure solutions through
both thin-client web access and thick-client
desktop application suites and modules. These
applications leverage the information-sharing

biliti f O bit i idi f l dcapabilities of Orbiter in providing powerful and
personalized web-accessible components.

• Service Oriented Architectures (SOAs) have
been proven to be a popular design for buildingbeen proven to be a popular design for building
reliable and scalable large-scale software
systems, borrowing from earlier Object
Oriented Programming (OOP) techniques of
encapsulation, cohesion, and the use of
abstraction layers behind well-defined public
APIs. Orbiter Federation services, built upon
industry standards, offer fast and secureindustry standards, offer fast and secure
access to a wide range of capabilities. https://orbiter.txcorp.com

Orbiter Multitier Portal Architecture
(MPA)

• Through the Multitier Portal Architecture (MPA) Orbiter Federation services are
delivered directly to end-users via a variety of rich interactive interfaces. The MPA
allows increasingly sophisticated capabilities to be rapidly developed to suit a wide
range of user requirements and the foundation provided by Orbiter Federationrange of user requirements, and the foundation provided by Orbiter Federation
enables these capabilities to be delivered swiftly and securely to end-users.

• Framework for delivering capabilities
to thin- and thick-clients using theto thin and thick clients using the
Orbiter RESTful SOA

• Flexible and re-usable architecture
for developing capabilities for thinfor developing capabilities for thin
web clients and thick local clients

• Comprised of four tiers:
• Tier I: Orbiter Federation SOA

• Low-level RESTful services
• Tier II: Thin-Client Orbiter Pilot

• Light weight client access
• Tier III: Thick-Client Orbiter CommanderTier III: Thick Client Orbiter Commander

• Fully capable installed application
• Tier IV: Thick-Client Orbiter Collective

• IDE for Orbiter development

https://orbiter.txcorp.com

Tech-X Orbiter ProjectTech-X Orbiter Project

• Federation provides a Service Oriented Architecture (SOA) of web p ()
services, delivering powerful, lightweight, secure, and scalable
capabilities.

• Pilot delivers Federation web services through web-accessible thin-
li t Th t d t l li t d li O bit biliticlients. These gateway and portal clients deliver Orbiter capabilities

through easy-to-use web interfaces.
• Commander is a rich cross-platform desktop application that

provides access to Federation services while allowing Orbiterprovides access to Federation services while allowing Orbiter
systems to interact directly with local compute resources.

• Collective opens the door to advanced collaboration across a wide
range of associations, facilities, and institutions. Orbiter meets the
needs of these organizations through the development of integrated
cross-platform applications that enable the full value of third party
products and services.

Orbiter Federation – SOAOrbiter Federation – SOA
• Tier I of the Orbiter Multitier Portal

ArchitectureArchitecture
• Orbiter services are implemented as

Representational State Transfer (RESTful)
web services that deliver functionalityweb services that deliver functionality
through a well-defined API.

• These services employ robust security p y y
standards including SSL and signed requests
that ensure client identities, the integrity of their
RESTful service calls, and the privacy of their
transmissions.

• Orbiter Web Services use SSL encryption,
access key identifiers, timestamps, and private
key signatures, ensuring the privacy,
authorization, and request integrity of all
interactions.

Tech-X Orbiter ProjectTech-X Orbiter Project

• Orbiter Pilot, Orbiter Commander, and the Orbiter Collective
demonstrate how access to Orbiter Federation resources and
services can be provided through reliable, scalable, and interactive
scientific gateways.
It fl ibl l tf d kt l ti t th ith• Its flexible cross-platform desktop solutions present the user with
a rich and customizable interface to data, information, computational
resources, and enterprise application bases.

• Orbiter solutions are inherently scalable where Federation PilotOrbiter solutions are inherently scalable, where Federation, Pilot,
Commander, and Collective each build modular capabilities that are
focused on particular needs.

• Orbiter solutions have been routinely used for the management and
retrieval of large amounts of data and information.

CWS4DB Project

A customizable Web Service for Efficient Access to Distributed Nuclear
Physics Relational Databases

DOE NP Phase I and II – Manouchehr Farkhondeh

Tech-X: Mark L. Green (PI), Catherine L. Ruby, Sean Burley, Krishna Kantam,
Srilakshmi Ramireddy

Need: As the size of NP data grows and the collaborative nature of HENP experiments
increases, the ability to access differently organized relational databases remotely,
efficiently, and yet in a user-friendly and interoperable manner is becoming very
important.

Partners: Jerome Lauret, Dmitry Arkhipkin (STAR project at BNL), Kate Keahey
(Nimbus project at ANL), Doug Olson (Open Science Grid), Alexandre Vaniachine
(ATLAS project ANL/CERN)

DOE Beneficiaries: Nuclear and high energy physics communities, national
laboratories, and collaborative projects

Commercial Beneficiaries: Companies requiring efficient web service access to
distributed relational databases with high-level database and user APIs

Problem Identification
• The importance of this project comes from the fact that a large fraction of

the ever-growing data generated by Nuclear Physics (NP) experiments is
stored in relational databases. For example:

– The BNL Relativistic Heavy Ion Collider (RHIC) supports STAR (Solenoidal Tracker at the at
the RHIC) which composed of 52 institutions from 12 countries, with a total of 529
collaborators;

– relational databases (such as Condition databases, Calibration databases, and Geometry
d t b) h il d i th STAR i tdatabases) are heavily used in the STAR experiment;

– while accessing data in such databases is convenient and available for local users who are
familiar with a particular database, the situation becomes more complicated when the
databases are distributed and heterogeneous.

• Tech X therefore proposed a system to• Tech-X therefore proposed a system to
overcome the outlined challenges by bridging
relational databases with high-level APIs
through Web services.

– In particular, the distributed and heterogeneous nature
of the databases will be addressed by creating Web
services in the Orbiter Federation Service Oriented
Architecture (SOA), which provides mechanisms
coordinating access to diversified data resourcescoordinating access to diversified data resources
through REST (Representational State Transfer)
services, caching, authentication, and authorization.

CWS4DB Technical Objectivesj
• Tech-X proposes to develop a customizable Web service for efficient

access to distributed NP databases. The proposed system will consist of:
– a generic Web service for accessing arbitrary distributed relational databases,
– a reference client implemented at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven

National Laboratory (BNL), for the Solenoidal Tracker at the at the RHIC (STAR) experiment,
and

– a tool for creation of the high-level and domain-specific clients required by particular
applicationsapplications.

• The Phase II objectives include:
– Take into account what was learned from the research in Phase I and extend the CWS4DB

prototype into a production-quality, load-balanced, auto-caching, grid-enabled, fault-tolerant,
d d d tand on-demand system.

– Use a flexible work plan involving a separate
piece of technical functionality that can be
implemented in a way that can be exercised
in the STAR computing environment, yetin the STAR computing environment, yet
developed in a general way for application’s
from other NP projects.

– The ultimate goal is to produce a set of
software tools and services that can be
easily adapted by the NP application
developer.

CWS4DB TasksCWS4DB Tasks

• Task 1: Determine CWS4DB System and Load Balancing Additional
Requirements and Properties (Tech-X & BNL)Requirements and Properties (Tech X & BNL)

– Extend the Phase I developed requirements and properties and continue prototype work with
our partners.

• Task 2: Design and Implement Tiered Deployment Capabilities (Tech-X)
D l ti d d l t b d t l f th CWS4DB t– Develop a tiered deployment based protocol for the CWS4DB system.

• Task 3: Design and Implement Auto-Caching Infrastructure (Tech-X & BNL)
– Provide a sophisticated auto-caching mechanism in order to increase the effective system

performance based on work with our partners.

• Task 4: Enable Multi-Virtual Organization Role-Based Capabilities (Tech-X)
– Develop the CWS4DB infrastructure required for user-friendly management and caching

capabilities.

• Task 5: Develop Dynamic On Demand Data Resource Access (Tech X)• Task 5: Develop Dynamic On-Demand Data Resource Access (Tech-X)
– This on-demand service provides a STAR MySQL database instance using the Amazon EC2

deployments.

CWS4DB Tasks ContinuedCWS4DB Tasks Continued

• Task 6: Develop Fault Resilient Data Resource Pathways (Tech-X)
– Eliminated a single point of failure for the STAR C++ API bound codes database queryEliminated a single point of failure for the STAR C++ API bound codes database query

requests.

• Task 7: Develop a Prototype On-Demand Data Resource Node (Tech-X &
BNL)

P t t d th d l t f d d d t d t t th d i d t– Prototyped the deployment of a on-demand data resource node to meet the dynamic data
demands of the STAR collaboration.

• Task 8: Prototype Pre-Cache Capabilities for Production Job Workflow
(Tech-X & BNL)

– Pathway for an authenticated and authorized user upon configuration of the CWS4DB
system to execute the customizable site specific test suite for pre-caching production job
queries is complete.

• Task 9: Develop a Customizable Site Specific Test Suite (Tech-X)p p ()
– In order to deliver a high quality of service infrastructure a customizable and site specific test

suite is required to validate and verify the performance and data delivery capabilities of the
CWS4DB system.

CWS4DB TasksCWS4DB Tasks

• Task 1: Determine CWS4DB System and Load Balancing Additional
Requirements and Properties (Tech-X & BNL)Requirements and Properties (Tech X & BNL)

– Extend the Phase I developed requirements and properties and continue prototype work with
our partners.

• Task 2: Design and Implement Tiered Deployment Capabilities (Tech-X)
D l ti d d l t b d t l f th CWS4DB t– Develop a tiered deployment based protocol for the CWS4DB system.

• Task 3: Design and Implement Auto-Caching Infrastructure (Tech-X & BNL)
– Provide a sophisticated auto-caching mechanism in order to increase the effective system

performance based on work with our partners.

• Task 4: Enable Multi-Virtual Organization Role-Based Capabilities (Tech-X)
– Develop the CWS4DB infrastructure required for user-friendly management and caching

capabilities.

• Task 5: Develop Dynamic On Demand Data Resource Access (Tech X)• Task 5: Develop Dynamic On-Demand Data Resource Access (Tech-X)
– This on-demand service provides a STAR MySQL database instance using the Amazon EC2

deployments.

Orbiter Federation – SOAOrbiter Federation – SOA

https://{ServiceProvider}/{ResourceAddress}/{Attributes}https://{ServiceProvider}/{ResourceAddress}/{Attributes}
/{ID}/{ExpirationTime}/{Signature}

• Orbiter Access Key {ID} declares user identity
• {Expiration Time} ensures request lifetime/validity
• RSA Private Key {Signature} ensures data integrity

Similar to the Amazon AWS Security Model

CWS4DB Tasks ContinuedCWS4DB Tasks Continued

• Task 6: Develop Fault Resilient Data Resource Pathways (Tech-X)
– Eliminated a single point of failure for the STAR C++ API bound codes database queryEliminated a single point of failure for the STAR C++ API bound codes database query

requests.

• Task 7: Develop a Prototype On-Demand Data Resource Node (Tech-X &
BNL)

P t t d th d l t f d d d t d t t th d i d t– Prototyped the deployment of a on-demand data resource node to meet the dynamic data
demands of the STAR collaboration.

• Task 8: Prototype Pre-Cache Capabilities for Production Job Workflow
(Tech-X & BNL)

– Pathway for an authenticated and authorized user upon configuration of the CWS4DB
system to execute the customizable site specific test suite for pre-caching production job
queries is complete.

• Task 9: Develop a Customizable Site Specific Test Suite (Tech-X)p p ()
– In order to deliver a high quality of service infrastructure a customizable and site specific test

suite is required to validate and verify the performance and data delivery capabilities of the
CWS4DB system.

CWS4DB Summary

File Name : txc02.ccr.buffalo.edu.config.inc.php

// ******************************* STAR specific config **************************************
/**/**
* @var STRING ORBITERCACHEFILELOCATION Cache file location.
*/
define('ORBITERCACHEFILELOCATION', '/tmp/cache');
/**
* @var STRING ORBITERHASHTYPE Orbiter Hash type@ yp
*/
define('ORBITERHASHTYPE', 'sha1');
/**
* @var integer ORBITERQUERYCONNECTIONSTRINGS Number of Orbiter Query Connection strings.
*/
d fi ('O Q CO C O S GS' 2)define('ORBITERQUERYCONNECTIONSTRINGS', 2);
/**
* @var boolean ORBITERUSEQUERYDB Defines whether to use Orbiter Query DB.
*/
define('ORBITERUSEQUERYDB', true);
/**/
* @var integer ORBITERQUERYDBSERVICEADDRESS Orbiter Query DB Load balancer service address.
*/
define('ORBITERQUERYDBSERVICEADDRESS', 'http://txc02.ccr.buffalo.edu/orbiter/'.ORBITERVERSION.'/service/webservice');
/**
* @var string ORBITERSQLFILELOCATION Orbiter Sql file location to run the pre-cache for new resource.@ g Q q p
*/
define('ORBITERSQLFILELOCATION', '/tmp/sqlfiles/auau200_log.txt');

CWS4DB TasksCWS4DB Tasks

• Task 3: Design and Implement Auto-Caching Infrastructure (Tech-X & BNL)
– Provide a sophisticated auto-caching mechanism in order to increase the effective systemProvide a sophisticated auto caching mechanism in order to increase the effective system

performance based on work with our partners.

• Task 4: Enable Multi-Virtual Organization Role-Based Capabilities (Tech-X)
– Develop the CWS4DB infrastructure required for user-friendly management and caching

capabilitiescapabilities.

• Task 7: Develop a Prototype On-Demand Data Resource Node (Tech-X &
BNL)

– Prototyped the deployment of a on-demand data resource node to meet the dynamic data
demands of the STAR collaboration.

• Task 8: Prototype Pre-Cache Capabilities for Production Job Workflow
(Tech-X & BNL)

– Pathway for an authenticated and authorized user upon configuration of the CWS4DBPathway for an authenticated and authorized user upon configuration of the CWS4DB
system to execute the customizable site specific test suite for pre-caching production job
queries is complete.

CWS4DB D t b QCWS4DB Database Query
Caching and Optimization

• Network bandwidth is important and
depends on the last mile normally

• Database server load is minimal
• Investigate the database service

payload size
• Wrote a custom ReSTful PHP

database service with a JSON
(JavaScript Object Notation) payload
to compare with the XML payload

CWS4DB Database Query Caching and
O ti i tiOptimization

• Log performance data forLog performance data for
each SQL operation

• Calculate and log JSON and
XML payload sizep y

• On average over a dataset the
equivalent JSON payload is q p y
8.8 – 10.1 times smaller

• In general an order of
magnitude lower bandwidth
loading is required with the
JSON PHP service

CWS4DB Summary
File Name : star.pp500.full.sql

https://cyber.txcorp.com/orbiter/service/star/OrbiterStarSimulatorService.php
/cache/off/
/format/XML/
/h /l l//host/local/
/file//tmp/testfiles/star.pp500.full.sql/
/address/http://64.240.154.24/orbiter/service/star/

R lResult:

Number of trials averaged: 1
Total number of queries: 6549
T l i f i 38 926 201 bTotal size of queries: 38,926,201 bytes
Total query time: 76.9 seconds
Total query rate: 85.1 query/second.

CWS4DB Summary

CWS4DB Tasks ContinuedCWS4DB Tasks Continued

• Task 6: Develop Fault Resilient Data Resource Pathways (Tech-X)
– Eliminated a single point of failure for the STAR C++ API bound codes database queryEliminated a single point of failure for the STAR C++ API bound codes database query

requests.

• Task 7: Develop a Prototype On-Demand Data Resource Node (Tech-X &
BNL)

P t t d th d l t f d d d t d t t th d i d t– Prototyped the deployment of a on-demand data resource node to meet the dynamic data
demands of the STAR collaboration.

• Task 8: Prototype Pre-Cache Capabilities for Production Job Workflow
(Tech-X & BNL)

– Pathway for an authenticated and authorized user upon configuration of the CWS4DB
system to execute the customizable site specific test suite for pre-caching production job
queries is complete.

• Task 9: Develop a Customizable Site Specific Test Suite (Tech-X)p p ()
– In order to deliver a high quality of service infrastructure a customizable and site specific test

suite is required to validate and verify the performance and data delivery capabilities of the
CWS4DB system.

CWS4DB Summary

Project SummaryProject Summary

PHP Code:
• 92 classes
• 642

functions/met
hods

• 10200 lines
API:
• Includes

source code
links
Usage• Usage

• Dynamically
updated

Orbiter Federation SOA:
Python Client Service Access Example

#!/usr/bin/python
import os, sys, base64, hmac, commands, timep , y , , , ,
from hashlib import sha1 as sha
from urllib import urlencode
from urllib import urlopen
from urllib import quote_plus Scripts and libraries

l il bl fmyhome = os.environ.get('HOME')
os.environ['TZ']='GMT'
time.tzset()

idfile = open(myhome + "/.orbiter/my.id")
ACCESS KEY = idfile read() strip()

are also available for:
C/C++, CURL, Java,
Python, PHP that can
access the Orbiter FederationACCESS_KEY = idfile.read().strip()

idfile.close()
keyfile = open(myhome + "/.orbiter/user.key")
PRIVATE_KEY = keyfile.read()
keyfile.close()

access the Orbiter Federation.

URI = sys.argv[1]
EXPIRES = str(int(time.mktime(time.localtime(time.time()+60))))
str = URI + '/OrbiterAccessKeyId/' + ACCESS_KEY + '/Expires/' + EXPIRES
SIGNATURE = base64.b64encode(hmac.new(PRIVATE_KEY, str, sha).digest()).strip()
print urlopen(str + '/Signature/' + SIGNATURE, params).read()

Orbiter Federation – SOAOrbiter Federation – SOA
• Orbiter Federation addresses security threats facing web services as

identified by Web Services Interoperability Organization which include:identified by Web Services Interoperability Organization which include:

– Message alteration: Attackers cannot alter an Orbiter request without breaking the
RSA SHA hash signature. Orbiter will reject a request that does not match canonical
string signed resource identifier for the specified Orbiter access key ID.

– Loss of confidentiality: The SSL protocol ensures that Orbiter service transactions
are handled privately and provides transport-level encryption.

– Falsified messages: Secure Orbiter services cannot be reached without a signedFalsified messages: Secure Orbiter services cannot be reached without a signed
canonical string resource identifier that matches the signature for the specified Orbiter
Federation SOA resource address.

– Man in the middle: The SSL protocol prevents an attacker from reviewing requests
and responses send securely between the Orbiter Federation SOA web services andand responses send securely between the Orbiter Federation SOA web services and
their clients.

– Principal spoofing: The Orbiter infrastructure is the only provider of valid Orbiter
access key identifiers and RSA private keys that are authorized to use Orbiter
F d ti SOA b iFederation SOA secure web services.

Orbiter Federation – SOAOrbiter Federation – SOA
• Orbiter Federation addresses security threats continued:

– Forging claims: Attackers cannot create valid Orbiter Federation SOA service
requests without obtaining an Orbiter access key identifier and valid RSA private key
from the Orbiter Federation SOA authentication/authorization infrastructure.

– Replay of message: Attackers cannot repeat a RESTful request to secure Orbiter
Federation services, as subsequent identical requests will be rejected. Attackers
cannot alter the user-provided expiration time without breaking the RSA signature.

– Replay of message parts: An Orbiter RESTful service request is not complete p y g p q p
without a valid signature that is applied to all other message parts. Attackers cannot
construct a new request from any part of a previous request without altering the
service request canonical string resource identifier and generating a valid signature.

– Denial of service*: The denial of service propensity is greatly reduced by the listedDenial of service : The denial of service propensity is greatly reduced by the listed
security measures in place at the current time within the Orbiter Federation SOA.
Furthermore, more specific measures are planned which will ban specific offending IP
addresses to further reduce the threat. *Distributed Denial of Service (DDOS) attacks,
however, are extremely difficult to defend against utilizing known security measures.however, are extremely difficult to defend against utilizing known security measures.

Orbiter Commander – Thick Client
• Tier III of the Orbiter Multitier Portal Architecture
• Orbiter Commander is a Application Framework where a:

Application Framework defines how to solve common problems not solutions– Application Framework defines how to solve common problems, not solutions
themselves

• Using well placed abstraction layers
• Defining points for extending functionality

Utilizes Eclipse Rich Client Platform for generating multi platform• Utilizes Eclipse Rich Client Platform for generating multi-platform
applications

– Mature Integrated Development Environment
– Simplified Standard Widget Toolkit– Simplified Standard Widget Toolkit
– Automatic handling of core GUI implementation

• Built on Orbiter Federation Services
• Modular design for plug and play• Modular design for plug-and-play

capabilities
• Well-defined extension points for

code-reuse and future development
• Highly customizable interface

STAR Commander Implementation

Commander Explorer Implementation

Orbiter Commander – Thick Client
(continued)

• Atomic capabilities are provided as modules that can be
installed as needed from a central module repository

• The Orbiter Federation RESTful SOA provides robust access to
diverse capabilities, such as:
• Multi-threaded streaming downloads of

repository files
• Live status monitoring of the beam
• Slideshows of instrument application

screenshots
• Organization of modules into “Suites”

For More Information

C t tContact:

Mark L. Green, Vice President of Systems Integration

716-204-8690

mlgreen@txcorp.com

htt // bit thttps://orbiter.txcorp.com

