Advanced SQUID Sensors and Readout Electronics in Support of the nEDM Experiment and Commercial Applications

Robin Cantor, STAR Cryoelectronics, Santa Fe, NM

OUTLINE

- Company Overview
- SQUID Tutorial
- SQUID Sensor and Packaging Development
- Readout Electronics Development
- Commercial Applications

Prototype planar first-order SQUID gradiometer assembly designed for nEDM experiment

Work supported by DOE under Contract No. DE-FG02-08ER84990

Company Overview

- Founded April 1999
- Licensed magnetic sensing technology, acquired production inventory and thin-film manufacturing infrastructure from Conductus, Inc. (Sunnyvale, CA) in July 1999
- Acquired building in Santa Fe, NM in June, 2001
- 6,000 sq-ft of office, lab, cleanroom and warehouse space; additional 2,000 sq-ft recently acquired
- Total investments in infrastructure over \$3,000,000
- 5 employees and 4 contract consultants

Products

- LTS and HTS dc SQUID sensors
- pcSQUID[™] Advanced PC-based SQUID readout electronics
- TES and STJ X-ray and alpha particle detectors
- Mr. SQUID[®] Educational Demonstration System
- Custom SQUID and thin-film foundry services
- Next-generation energy dispersive spectrometers based on TES microcalorimeter detectors for X-ray nanoanalysis and nuclear forensics
- High resolution spectrometers based on Ta STJ detectors for energy absorption spectroscopy at the synchrotron
- Cryogen-free ADR cryostats for R&D

Basic DC SQUID Operation

- Two Josephson junctions connected in parallel, • represented by resistively shunted junction (RSJ) model
- **Optimal design parameters:**

Stewart-McCumber parameter
$$\beta_c = \frac{2\pi}{\Phi_0} I_c R^2 C < 1$$

Modulation parameter $\beta = \frac{2LI_c}{\Phi_0} \approx 1$

Figure of merit:

Energy resolution $\varepsilon = \frac{S_{\Phi}}{2L} \approx 12k_B T \sqrt{LC} \propto \sqrt{\frac{C_s}{J_c}}$

For lowest noise performance require: •

Low SQUID inductance *L* ~ 10 pH

Low capacitance C

High critical current density J_c

> 1 kA/cm²

< 1 pF

I_c: Critical current

- J_c : Critical current density
- $C_{\rm s}$: Specific capacitance
- $\Phi_0 = 2.068 \times 10^{-15} \text{ Wb}$

Basic DC SQUID Operation

Operation with constant current bias I_b

- Voltage output is a period function of applied flux
- Use flux-locked loop feedback electronics to linearize output

Optimization for practical applications

STAR

Cryoelectronics

- Improve flux capture area using pickup loop transformer-coupled to SQUID inductance
- Integrated magnetometers for magnetic field measurements
- Integrated gradiometers for magnetic field gradient measurements

$$S_B^{1/2}(f) = B_{\Phi} \cdot S_{\Phi}^{1/2}(f)$$
$$B_{\Phi} = \Phi_0 \frac{L_p + L_{i,eff} + L_{par}}{M_i} \frac{1}{A_{eff}}$$
$$G_n^{1/2}(f) = S_B^{1/2}(f)/b$$

 A_{eff} : Effective area of pickup loop L_p : Pickup loop inductance $L_{i,eff}$: Effective input coil inductance L_{par} : Parasitic inductance M_j : Mutual inductance of input coilb: Gradiometer baseline

Integrated SQUID Gradiometer Development for nEDM

Long baseline first-order planar gradiometers

• G136 with 3.6 mm baseline

STAR

Cryoelectronics

- $B_{\Phi} = 0.63 \text{ nT}/\Phi_0$, $S_B^{\frac{1}{2}} = 1.5 \text{ fT}/\text{Hz}^{\frac{1}{2}}$, $G_n = 0.42 \text{ fT/cm-Hz}^{\frac{1}{2}}$

• G1240 with 4.0 mm baseline

- $B_{\Phi} = 0.3 \text{ nT}/\Phi_0$, $S_B^{\frac{1}{2}} = 0.9 \text{ fT}/\text{Hz}^{\frac{1}{2}}$, $G_n = 0.23 \text{ fT/cm-Hz}^{\frac{1}{2}}$ (estimated values)

Ultra-Sensitive Gradiometer Development for nEDM

Multi-chip module with pickup loop chip and SQUID chip

AR

Cryoelectronics

- Fabricate four-layer pickup loop with 90 mm baseline on 150 mm wafer
- Wire bond to input of separate SQ300 SQUID chip with Nb ribbon
- $B_{\Phi} = 0.105 \text{ nT}/\Phi_0$, $S_B^{\frac{1}{2}} = 0.3 \text{ fT}/\text{Hz}^{\frac{1}{2}}$, $G_n = 0.033 \text{ fT/cm-Hz}^{\frac{1}{2}}$ (est. noise values)

Ultra-Sensitive Gradiometer Development for nEDM

Options

• Need extremely robust fabrication to reduce risk of damage in strong *E*-field within experimental cell,

- or -

• Remotely located SQUIDs (outside of main experimental cell)

Issues

 Remotely locating SQUIDs requires high input inductance design with very high input coupling (*M_i*)

$$B_{\Phi} = \Phi_0 \frac{L_p + L_{i,eff} + L_{par}}{M_i} \frac{1}{A_{eff}}$$

- Can be accomplished using large, multi-turn input coils
 - Introduces large parasitic capacitance that can degrade performance
 - Requires interlayer insulation with low dielectric constant

Improved SQUID Process Development

Key Improvements

STAR

Cryoelectronics

- Josephson junctions defined using dry etch (RIE) process
- PECVD SiO₂ used for all interlayer dielectrics
- New Nb and via RIE processes to improve cross-overs
- Dramatic results for via, cross-over critical current I_c
 - Junction vias (2 μ m) ~ 40 mA
 - Wiring vias (2.5 μm) ~ 200 mA
 - Wiring cross-overs (3 μ m) ~ 200 mA (~10 MA/cm²)

SQUIDs for High Inductance Loads

Two successful candidate designs:

- ► SQ1200 (four-washer series-parallel, symmetric feedback)
- 1200 nH input, 0.13 μ A/ Φ_0 input coupling
- ~4 $\mu \Phi_0$ /Hz^{1/2} flux noise with matched load (~500 fA/Hz^{1/2} current noise)
- ► SQ2600 (two-washer parallel, symmetric feedback)
- 2600 nH input, 0.096 μ A/ Φ_0 input coupling
- $\begin{array}{rl} & \sim 2.5 4 \ \mu \Phi_0 / Hz^{\frac{1}{2}} \ \text{flux noise} \\ (\sim 250 \ \text{to} \ 400 \ \text{fA} / Hz^{\frac{1}{2}} \ \text{current noise}; \\ \text{lowest noise commercially available}) \end{array}$

ailable)	
502600	STARCING SO2600 v2
Chip	

SQ1200 Schematic

SQUID Package Development for nEDM

Key Features

- Four SQUID channels per assembly
- Reliable connector interface based on LEMO 26-pin connectors
- Optional cooled matching transformer circuit board for each channel
- Modular sensor package with connectorized interface

SQUID Readout Electronics Development for nEDM

Overview

Cryoelectronics

AR

- Robust design based on flux modulation technique
- Useable bandwidth extended from 100 kHz to ~1 MHz
- All drive signals and feedback loop parameters configurable via software
- Single-channel design successfully completed, eight-channel design underway

Measured rms white flux noise of a STAR Cryoelectronics SQ100 SQUID, recorded using second revision of prototype feedback loop design

> Prototype single-channel feedback loop assembly

Current single- and eight-channel feedback loops

Commercial Developments

Commercial products that leverage core technologies developed as part of the nEDM SBIR project include:

- Advanced SQUID sensors and related packaging
- High-speed, multi-channel, PC-based dc SQUID readout electronics

Applications and markets include:

- Biomedical imaging
 - Magnetoencephalography (MEG) and magnetocardiography (MCG)
- Advanced, cryogen-free spectrometers
 - X-ray nanoanalysis
 - Alpha particle spectroscopy
 - X-ray absorption spectroscopy at the synchrotron

Spectrometer Development

MICA-1600 Spectrometer for X-Ray Nano-Analysis

A next-generation, cryogen-free energy-dispersive X-ray spectrometer with the energy resolution of a wavelength dispersive spectrometer (WDS)

MICA-1600 X-ray spectrometer with Bruker pulse processor and Quantax EDS analysis software mounted on a Hitachi S-4800 FE SEM

MICA-1600 Application Data

Sample: NIST K3670 reference glass, Vacc = 7 kV (red spectrum). All peaks clearly resolved, including Zn L α (1.012 keV) and (Zn L β (1.034 keV) peaks. The equivalent spectrum that would be measured with 120 eV resolution (FWHM at Si K α) typical for a conventional EDS spectrometer is shown for comparison (black spectrum).

MICA-1600 Application Data

MICA-1600 clearly resolves Ta, Si, and W peaks around 1.75 keV and enables surface analysis of nanometer-scale films.

STAR Cryoelectronics

Spectra on the right illustrate the effect of the increasing X-ray excitation volume with increasing beam voltage.

Sample: W (20 nm) over Ta (20 nm) on Si

Spectrometer Development

Alpha Particle and X-Ray Absorption (EAS) Spectroscopy

- Cryogen-free ADR design with 0.7 W pulse tube cooler
- Fully automated ADR control and temperature regulation
- Base temperature <50 mK, stability <10 µK rms at 100 mK
- Remote rotary valve and vibration isolation at 300 K, 60 K, and 3 K
- Detectors and SQUID readouts leverage technologies developed for nEDM project

DRC-102 Ta-based STJ Cryostat Configured for Synchrotron Science Applications DRC-201 Alpha TES Microcalorimeter Cryostat Configured with Load Lock for Nuclear Forensics Applications

Cryoelectronics

Summary

SQUID Gradiometer Development

- Ultra-sensitive integrated SQUID gradiometers and magnetometers successfully developed
- New robust SQUID fabrication process implemented
- Successfully developed new high input inductance SQUIDs

SQUID Readout Electronics Development

- Developed next-generation designs for single-channel and multichannel applications
- Bandwidth extended by an order of magnitude
- Flexible design architecture with PC-based software control

