Refractory Pressed Powders as Porous Solid Catchers of Stopped Rare Isotopes Porous Thin Film Targets for Medical Isotopes

Nuclear Physics SBIR/STTR Exchange Meeting

August 8-9, 2017

Sponsor: Office of Nuclear Physics, DOE Program Officer: Dr. Manouchehr Farkhondeh Phase II Grant Number: DE-SC0011346 Phase IIB Grant Number: DE-SC0007572

Small Business

InnoSense LLC 2531 West 237th Street, Suite 127 Torrance, CA 90505

Collaborator

Dr. Jerry N. Nolen, Jr., Physics Division Argonne National Laboratory

Principal Investigator

Dr. Uma Sampathkumaran (310) 530-2011 x103 uma.sampathkumaran@innosense.us

Presented on Aug 9, 2017

Presentation Overview

- About InnoSense LLC
- Commercialization Status
- Motivation
- Relevance to Nuclear Physics Programs
- Summary
- Acknowledgments

About InnoSense LLC

- Established in 2002 by private investment, R&D operations in 2004, housed in a recently expanded 9,000 square feet laboratory facility located in Torrance, California.
- Key laboratories include five "wet" chemical facilities equipped with fume hoods, a clean room, a spectroscopy facility, optics and testing laboratory, and two machine shops.
- 22 employees, including 5 PhD, 3 MS and 2 MBA degree holders.

Commercialization – Building from ONP Funding

PO for silica aerogel coatings on metal lattices – Invoiced July 2015

Porous Scaffolds for Refractory Solar Selective Coatings – SuNLaMP

Prior DOE ONP funding enabled us to develop the technology for porous monoliths and expand the application base for these materials

Commercialization Status

Army: W15QKN-09-C-0153 Passive Temperature Dosimeter

- Phase III Funding
- Correlation Testing planned at Yuma Proving grounds October 2017
- Production anticipated in 2018 for 120 mm ammunition

PC lens and PU visor

- DOD DTRA RIF award 2015
- Nanomaterials in coating
- Potential to contract coating application for DTRA and other commercial markets

MDA: HQ0147-14-C-7012 Hypergolic Leak Detector for THAAD

- Ongoing Second Phase II
- Drop-in Replacement Leak
 Detector for MDA THAAD missiles
- Production Prototype Order in 2017
- Targeting biomedical diagnostics

Refractory Hot Catchers for Rare Isotopes (no primary beam power)

- Porous solid catchers with thicknesses in the range of ~20 g/cm² will complement gas catchers which are the FRIB base-line concept for stopping energetic rare isotopes and delivering them for stopped beam research or for reacceleration.
- Tungsten catcher to stop and release ¹¹Li and ^{6,8}He isotopes

Medical Isotope Production Target Development (must be stable with beam power)

- Efficient production and release of radioactive noble gas precursors at low and room temperature – Higher production rates of ²¹¹At, ⁷⁷Br and ¹²³I
- ⁶Li induced reaction for parent/daughter production system, concept for a dedicated linac or cyclotron for radio-halogen production – Overnight delivery to users from single national facility.

InnoSense LLC

Catchers/Targets Being Studied at ISL and ANL

Refractory Catcher/Target	Production beam	Collected Isotopes
Tungsten-coated SiO ₂ Aerogel	¹⁸ O (typical)	⁸⁻¹¹ Li ^{6,8} He
Carbon Aerogel	¹⁶ O, ⁴⁸ Ca, etc.	$^{12}C^{14}O_{-}^{12}C^{24}O_{-}^{12}C^{24}O_{2}$
Yttria-Stabilized Zirconia (YSZ) and Hafnia (HfO ₂) Porous Monolith	¹² C, ⁴⁸ Ca, etc.	⁹ C ¹⁶ O_ ²² C ¹⁶ O ⁹ C ¹⁶ O ₂ ⁻²² C ¹⁶ O ₂
Sintering-inhibited Disks of Tungsten, Tungsten + ALD-Hafnia and Tungsten Carbide	¹⁸ O, ⁴⁸ Ca, etc.	"All of the above"
Nanoporous CaO Monolith	⁴⁰ Ca	³¹⁻³⁵ Ar
Nanoporous Metal Oxide (M ₂ O ₃) Thin Films* (M = ²⁰⁹ Bi, ⁷⁵ As, ¹²¹ Ab)	⁴ He, ^{6,7} Li	²¹¹ Rn/ ²¹¹ At, ⁷⁷ Kr/ ⁷⁷ Br, ¹²³ Xe/ ¹²³ I t _{1/2} [14 h/7.4 h]; [1.24 h/2.78 d]; [2.08 h/13.4 h]

* Thin film targetry for medical isotope production

Catcher Thickness Considerations

- Desired areal density (η) or thickness for efficient isotope capture can range from 3–20 g/cm² depending on the material used.
- Areal density can be related to the apparent volumetric density as:
 - η =ρL
- This value is used to screen catcher disks after the 1000–1500 °C vacuum heat treatment

Must be thick to stop high energy radioactive beams at FRIB

Refine processing of candidate W powders and Bismuth Oxide thin films

As-coated

Fired@600°C

3X cycles@600°C

Open Porosity Retained in W and WC After Heat Aging @1200 °C for 2 h

x5K

x20K

NTERIOR - W

Tungsten (<1 μm) App. density ~7 g/cm³ (n =5)

000948 20.0kV X20.0K 1.50 m

Minimal grain growth and sintering-inhibition achieved with W and WC powders.

Open porosity retained at surface and interior of both W and WC disks.

Diameter = 12.1 mm Thickness = 1.6 mm

Hg-intrusion porosity

W ~60% **WC** ~64%

InnoSense LLC

Tungsten Carbide (150–300 nm) App. density ~4 g/cm³ (n=6)

Nanoporous Bismuth Oxide Thin Films

x5K

x20K

Imaged @ 44.6 degree

- Contiguous nanoporous bismuth oxide films formed on Titanium coupons
- Thickness tunable from 2 to 80 μm targeting 2–20 μm.
- Films remain adhered after 3x in vacuum heating to 600 °C.
- Improve uniformity of coated film across film surface
- Next steps:
 - Test at FSU with low energy carbon beams for stability evaluation
 - Test at ATLAS with energetic ⁶Li or ⁷Li beams for formation and release of radiohalogen Radon-211.

InnoSense LLC

Initial Tests with a Bismuth Metal Target

Health physicist, Post-doc, Undergraduate

Target/ helium _____ plumbing/ heater assembly

Havar window

32 mg/cm² Bi on Ni

RGA Installed in the FSU Tandem Accelerator

Beam comes from the right, the RGA is on the left, and the sample chamber is in the center below the turbo pump.

Close-up of the sample chamber with the sample holder visible through the window. Beam enters from the left. A beam diagnostics cross is upstream of the sample chamber.

Sample Holder and Heater in RGA

Left and left-center: Alumina crucible, tungsten heater, and current feed-throughs. *Right-center:* View through the chamber window of the sample holder and its heat shield. *Right:* View of the sample with the heater on.

RGA Spectra of ⁴He from Calibrated Leak and from Alumina Stopper Implanted with ⁴He

RGA spectra between masses 3 and 12. *Left:* After He beam implantation; *Left-center:* After heating to ~1000 °C in 30 s; *Right-center:* 40 s later showing depletion of He from sample. *Right:* Same region with sample cold and calibrated He leak open to chamber.

InnoSense LLC

Release of ¹³CO Measured at T<1000 °C Matching Theoretical Simulations

Left Panel - Mass 29 (¹²COH + ¹³CO) is larger relative to mass 28 (¹²CO) in the right panel. The **right panel** was recorded near the peak of the ¹³CO release and the left panel 30 minutes later.

Revised Test Setup for FSU

- Turbo Pump connected to RGA body
- Sample in smaller chamber to minimize surface area/complete system baking
- Eliminated porous insulating materials

Upgrade to UHV and much more compact sample chamber and heater. Will add plasma "cleaner" to reduce hydrocarbon background.

Setup for solid stopper tests at NSCL

- Beam time is approved to do develop on-line solid catcher evaluation at NSCL using short-lived isotopes
 - Collaboration of Argonne and NSCL scientists

Summary

- Refractory nanoporous tungsten and tungsten carbide solid catchers developed
 - Apparent density
 - Tungsten ~7 g/cm³
 - Tungsten carbide ~4 g/cm³
 - Open (intrusion) porosity
 - Tungsten ~60%
 - Tungsten carbide ~ 64%
- New RGA method for release characteristics of stable isotopes developed and demonstrated mass 4 (⁴He release)
- Revised heater and UHV upgrade design completed for in-beam studies at FSU
- Beam time approved and apparatus designed for on-line testing at NSCL
- Extending development of porous solid catchers to porous thin film targets of oxides – to be tested for radiation damage with ion beams at FSU

Acknowledgments

DOE and the Office of Nuclear Physics to support these efforts through the following grants DE-SC0011346 and DE-SC0007252

Program Officer(s) – Dr. Manouchehr Farkhondeh Dr. Michelle Shin

Dr. Georg Bollen for technical discussions and sustained interest to evaluate the catcher materials at FRIB

Dr. Ingo Weidenhover at FSU for beam-line studies at the FN Tandem accelerator

