Low-Z Thin Film Stripper Foils, Targets and X-Ray Windows

Contract # DE-SC0011287

Nalin Kumar, Ph.D.

President
nanoRANCH
UHV Technologies, Inc.

Wolfgang Mittig
NSCL/Michigan State University

Headquarters:

1708 Jaggie Fox Way Lexington, KY 40511-1162 Manufacturing:

450 South Freeway Fort Worth, TX 76104-3503

Outline

- Overview of UHV Technologies/nanoRANCH
 - History and Core Competencies
- DOE NP Phase II SBIR Project
 - Free Standing Diamond-Boron Stripper Foils
 - Diamond X-Ray Windows for Low Energy Detectors
- DOE NP Phase I SBIR Project
 - Scalable

UHV Technologies, Inc. (aka nanoRANCH)

- 23 year old high tech company with facilities in Lexington, KY and Fort Worth, TX
 - 1. New headquarters in Lexington, KY opened in 2016
 - 2. Over 20,000 sq. ft. combined Manu. & R&D Space
 - 3. Active collaboration with 10+ Universities
- 3-Prong business strategy
 - 1. R&D in Advanced Thin Films, Diamond, Nano-Materials & Devices, X-Rays, Artificial Intelligence and Deep Learning, & Optical Fiber Coatings
 - 2. In-House Small Scale Manufacturing
 - 3. Commercialization through Subsidiaries and Alliances
 - 4. Various spin-offs including 1 IPO (NASDAQ) and > 22 million in Venture Capital
- Current Status
 - 1. 20+ employees
 - 2. \$2.5M revenue in 2016, \$3.5M expected in 2017
 - 3. Multiple R&D contracts and products

R&D Facilities

UHV Technologies, Inc.

Current R&D Projects

- **Mercury Air Continuous Emissions Monitor (CEM) 2013-16**
 - **US-DOE** Phase II Project + Matching funds from KY
 - Spin-off: nanoRanch Environmental Systems, LLC in Lexington, KY
- **In-Line High Throughput Scrap Metal Sorter 2014-19**
 - **Funded by US-DOE ARPA-E Project and Commercial Partners**
 - Uses advanced sensors and artificial intelligence; throughput ~ 100M lbs/year

- NIH Phase II SBIR Project and KY Matching Grant
- Real time contamination detection in solid, liquid and gel formulations

US-DOE ARPA-E Project

- Nano-Crystalline Low-Z Thin Films for X-Ray Windows 2014-17
 - **US-DOE Phase II Project and KY Matching Grant**
- A Scalable Additive Manuf. Technology for Large Area PCBs 2017
 - US-DOE Phase I SBIR Project

UHV Technologies, Inc.

Product Photos

UHV Technologies, Inc.

NP Phase II SBIR Low-Z Stripper Foils, Targets and Windows

- Team: UHV and NSCL/MSU (Dr. Wolfgang Mittig)
- **Objective:** The goal of this project is to develop technologies for the production of <u>free standing low Z thin films</u> in the range from a few ug/cm² to over 100mg/cm² for applications as charge strippers and targets in heavy ion accelerators as well as x-ray windows for low energy x-ray detectors and gas ion detectors.
- **Key Technical Concept:** Free Standing Thin Films consisting of 10-100's of stress controlled nano-layers
- Enabling Technologies:
 - Fully automated nano-layer PLD manufacturing system
 - Instrumentation for *in-situ* measurement and control of stress in individual and multi-layer thin films
 - Computer controlled process optimization

UHV Technologies, Inc.

Automated Stripper Foil Manufacturing System

UHV Technologies, Inc.

100+ Layer C-B Thin Film Design

PADnano-Carbon Layer
PLD nano-Diamond Layer
PADnano-Carbon Layer
PLD nano-Diamond Layer
PADnano-Carbon Layer
PLD nano-Diamond Layer
PADnano-Carbon Layer
Release Layer
Substrate

PLD nano -Diamond Layer	
PLD nano -Boron Layer	
PAD nano -Carbon Layer	
PLD nano -Boron Layer	
PAD nano -Carbon Layer	
PLD nano -Diamond Layer	
PAD nano -Diamond Layer	
Release Layer	
Substrate	

PLD	nano -Diamond Layer	
PLD	C-B Mixed Layer	
PAD	Mixe d _{nano} -Boron Layer	
PLD	C-B Mixed Layer	
PAD	d _{nano} -Boron Layer	
PLD	C-B Mixed Layer Mixe Mixed Layer	
PAD	d _{nano} -Diamond Layer	
Release Layer		
Substrate		
L		

UHV Technologies, Inc.

SEM of Multi-Layer Foils

C-B Foil 48 Layers B/C= 10%

UHV Technologies, Inc.

2016 Stripper Foil Data

Stripper Foil Lifetime measurement at NSCL

Figure 10: Lifetime result at the stripper injection system of the NSCL. The results are compared to results from Sugai with a Ne beam (I.Sugai et al., NIM B 269 (2011) 223)

Foil Comparison Experiments

Comparison of 8 different types of stripper foils was performed by irradiating them with Ar⁴⁺ beam under different intensities and fluences at the 5U accelerator of University of Notre Dame

Code	Foil type
1	One layer DLC, type 3
2	One layer DLC, type 1
3	7 layers HBC, 4B+3C
4	9 layers HBC, 5B+4C
5	17 layers HBC, 9B+8C
6	48 layers HBC, 24B+24C
7	100 layers HBC, 50B+50C
8	One layer 10%B+90%C mixture

Irradiation Damage to Foils

BEFORE

100-Layer HBC

AFTER

UHV Technologies, Inc.

Damage for Various Types of Foils

Damage vs Number of Layers

CONCLUSION: 100 layer foils are better than all others foils tested

UHV Technologies, Inc.

Low Energy X-Ray Window Development

Figure 1: A comparison of low energy low energy x-ray transmission of diamond (C) and boron (B) windows of different thicknesses in comparison with standard Be window.

Figure 2: Calculated x-ray transmission curves for 0.5micron thick films of various materials at UHV.

Low Energy Window Design

Figure 4: A photograph of a 9mm diameter 200nm thick Si₃N₄ window made by UHV.

Figure 5: Photograph of a sealed x-ray detectors made by Ketek using 9 mm diameter Be window.

Wafer Fabrication

Photographs of Various X-Ray Windows

UHV Technologies, Inc.

Phase II & Commercialization Plans

- Currently in No-Cost Extension until 10/17. May ask for another NCE if NSCL-MSU needs more time for further testing
- Fabricate and evaluate 200 and 400 layer foils, different thicknesses
- Explore other nano-crystalline multi-layer thin films
 - High brightness field emission cathodes
 - Magneto-electric bi-layer films
 - PZT-BFeO3 strained piezoelectric films
- Currently seeking partnerships with x-ray detector manufacturers to integrate x-ray windows in their spectrometers.
- The Stripper Foil Manufacturing facility is ready and is already providing foils to NP Community

CALL US WITH YOUR REQUIREMENTS