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@ FMT Capabilities

> Founded in 1987, FM Technologies, Inc. (FMT) Is a
technology company with expertise in: charged particle beams,
particle accelerators, plasma physics, electron/ion/microwave
beam Interaction with materials, microwave source
development, pulsed power, and integration of these areas

> FMT has several projects approaching the commercial
development stage:

- Ceramic/Ceramic & Ceramic/Metal joining for use in high
temperature chemical conversion processes

- Self-Bunching Electron Guns with/without Current
Amplification for RF Accelerators and RF sources



@ FMT Facilities/Equipment

> Headquartered in Chantilly, VA, FMT has 10,000 ft? of laboratory
and office space available.

> Offices equipped with multi-core workstations with a variety of
simulation and design software.

> Laboratory has a full machine shop & plasma processing equipment:
o Conventional & CNC lathes with o Vertical & horizontal band saws

high speed tool post grinder o Diamond saws

o Conventional & 4-axis CNC o Small (digital) & large drill presses
milling machines o Microwave assisted chemical vapor
o Grinding and sanding equipment deposition system

o Acetylene, arc and spot welders o RF and DC 3-gun sputtering system
o Plasma cutting torch, RAM EDM o 2473K brazing/joining furnace



@ FMT Facilities/Equipment

> Experimental hardware owned by FMT includes:

o Pulsed Power Electron Beam and RF sources
Electron Beam System (1MV x 40kA x 0.1ps)
L-band (0.5 and 5 MW pulsed)
S-band (0.8, 1, 2.6 and 13 MW pulsed; 1, 2 & 6 kW CW)
X-band (0.25, 0.75 & 1.5 MW pulsed)
Broadband Amplifiers (50-2500 MHz, 50-900W CW)

o MEIJI optical microscope w/ video out (400x, 2.5um resolution)

— Oscilloscopes — High-power RF components
» Ten 100-400MHz digital scopes » Circulators L-Ka
* One 50GHz sampling scope » |solators L-X
— Pulsed & DC magnetic coils to 2T » Phase/amplitude adjusters
— Cryo pump e 0.1-1 MV pulse modulators
— Nine vac-ion pumps, 2-400 L/s — Chemicals and glassware
— Seven turbo pumps, 60-400 L/s — 0.1-100kW Power supplies and other
— Fourteen roughing pumps test equipment and electronics

— 1.5 MJ Capacitor bank



@ Project Rationale and Approach

> Conventional CW Klystrons are expensive and inefficient

> FMT has been developing a self-bunching electron gun, known as the micro-
pulse gun or MPG, for use as a driver for both RF sources and linacs

> RF fed into the MPG produces narrow electron bunches that are 3-5% of the
RF period; electron current is proportional to the input RF power

> A post accelerated MPG beam sent into a cavity tuned to its RF input
frequency produces very high RF powers, this klystron like configuration is
called a micro-pulse klystron or MPK

> Narrow bunches from the MPG allow the MPK to achieve a wall-plug
efficiency near 80%

> The MPK can reduce wasted energy by a factor of eight compared to a
conventional CW klystron (JLAB), suggesting the MPK is a green
technology

> Thomas Jefferson Laboratory could be one beneficiary of the MPK, reducing

their annual electric bill from $5.77M to $2.38M.
Assumptions: 340 8kW tubes at 33% efficiency, electricity $0.1/kW-hr operating 7000hrs/year



MPG Model

Model for Self-Bunching Electron Gun
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Gain Condition: 6,06,(1-T) > 1, which leads to exponential growth
in electrons limited by space charge.
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.-MPG Bunching Characteristics

Anode Collision Current vs. Time
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@ CW L-MPG Performance

L-MPG Average Electron Current & Energy vs RF Power In
f=1.497GHz
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Technology Readiness
Experimental Verification of MPG Bunching

Current trace of L-band MPG micro-
bunches showing one bunch per RF
period

- pulse width ~40 ps
- peak current density ~22 A/cm?

L-band experiment showing tapered

waveguide and L-band MPG
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200my

Applied RF power in cavity (top)

20 A/cm? transmitted macro-pulse at
S-band (bottom)

Peak micro-bunch current is about
20x higher than average
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(FMT Examples of L-X MPG’s and a Gatling MPG
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Two Primary Applications for the MPG:
Microwave Tubes and Accelerators
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(FMT
Objectives for LL-band CW MPK

> Achieve a high (~80%) wall plug efficiency
with reasonable gain (~38dB includes solid
State driver)

> Achieve an 8-12kW RF CW Output
> Achieve a low (<15kV) accelerating potential

> Final goal is to achieve a buildable and
practical design
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@ The L-MPK, A CW LL-Band Klystron

Output Power: 11.5 kW CW

Beam Voltage: -12 kV (assume 95% efficient)

Beam Current: 1.04 A

Drive Power: 500 W (assume solid state amplifier with 24dB gain & 45% efficient)
Frequency: 1497 MHz

Wall Plug Efficiency & Gain: 80.7% & 37.6dB

Existing Technology Efficiency: ~33%

L-MPK waste energy Is 12.3% of the existing technology, suggesting the L-MPK'Is a
Green Technology

YV V V V VY V V VY

RF Input Connector

RF Output Coaxial

Connector 1 5/8”
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(VT

Wall Plug Efficiency & RE Power Out vs RE Power In

L-MPK Efficiency & Output Power vs Input RF Power
f=1.497 GHz, Output Cavity Efficiency=91%,
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Front End of L-MPG with DC Break/Feedthrough

DC Break/RF Feedthrough
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(FMT
Coaxial to Waveguide Transmission

Coaxial Converter to Waveguide Transmission Efficiency
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(VT

Transmission Past Pumping Ports

Power Transmission From Pumping Port
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(FMT
DC Break/RFE Feedthrough Transmission

Transmission for DC Break/RF Feed
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(M T
.-MPG with DC Break & Feedthrough
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(FMT;
RF Reflected Power Without & With Beam
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_-MPG Performance

L-MPG Electron Average Current & Energy vs RF Power
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(VT

Comparison of Actual L-MPG
Current Density Distribution to
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.-MPG Beam Heating oft Anode Grid
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Displacement off Anode Towards
Cathode Due to Beam Heating
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@D Summary and Status

> L-MPG built, operational and expected performance in agreement
with design, except for “bump”™ in current density distribution.

> Localized current density distribution will need to be flattened by
redesigning and rebuilding existing L-MPG anode.

> Choices for redesigning the L-MPG anode include:

- In planar geometry, the anode thermal conductivity will need to
be increased.

- A cylindrical Anode-Cathode geometry has the effect of
producing uniform expansion under beam heating, which
enables compensation for grid spacing.

> Simultaneously, the joining furnace chamber has been successfully
expanded In volume by 10x to accommodate the joining required for
the high-power RF load and cavity and other joining.
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