

# **100W Mode-Locked Green Laser for GaAs Photoemission Guns**

Jihong Geng, PhD Principle Investigator AdValue Photonics, Inc

**DoE Grant Number:** 

**DE-SC0011215** 





- Company Information
- Motivation & Addressed Problems
- Our Solutions
- Phase II Tasks
- Accomplishments to Date
- Plans in Year 2
- Questions



# **Company Background**

- Founded in 2007
- Located in the Optics Valley Tucson, AZ
- Consistent Profitable Growth
- Outstanding Technical Team (10+ PhD)
- Innovative and Award Winning Products
- Dedicated Application Lab
- Glass and Fiber Fabrication Facility
- Building World Class Operational Capability







# AdValue Photonics Company Key Milestones



## Product at glance



**AdValue Photonics** 



**Product Market** 

## **The Premier Manufacturer of 2µm Fiber Lasers and Amplifiers**



### **Scientific**



Materials Processing



**Medical** 





### **DoE needs**

### **DoE Customer**: Thomas Jefferson National Lab

Advanced accelerator development requires a >100W mode-locked green laser, which can be phase-synchronized to GHz RF signal for the application of GaAs photoemission guns.

## **Commercial applications**

- Material processing
- Other scientific applications





### **Solid-State Laser Approach**





### Solid-state laser cavity

- Many bulk components
- Complicated alignment
- Mechanical sensitivity
- Thermal deformation







## **Fiber Laser Approach**



### Fiber laser cavity

- Output Monolithic structure robustness, compactness, reliability
- Well-defined waveguide excellent beam quality
- ☺ Well-managed heat high average power capability
- Long fiber length nonlinear optical effect, peak power limit
- Small fiber core nonlinear optical effect, peak power limit



## High-efficiency high-gain gain fiber



### Raw Materials $\rightarrow$ Laser Systems





## Phase II Tasks

- Develop a robust mode-locked Yb-doped fiber laser oscillator
- Model the pulse evolution in high-power Yb-doped laser system
- Design and fabricate Yb-doped silicate fibers for amplifiers
- Phase locking of a mode-locked fiber laser to an external GHz signal
- Design and build a fiber amplifier chain with 200W average output
- Characterize the noise from high-power mode-locked fiber amplifiers
- Demonstrate a 100W mode-locked green laser system
- Build a prototype unit



# Simulation



12

# AdValue Photonics

# GHz mode-locking









# AdValue Photonics

# 300 MHz mode-locking





| REF<br>10.0 d                                      | -30.00 dB<br>B/ *A V | m<br>Vrite Non | m BV | Vrite Aut          | o C1               | Write Au | MKR<br>to | 303.12<br>-72.22 (     | MHz<br>1Bm | FOF    | REF -<br>10.0 dl | 30.00 dB<br>B/ *A \ | 3m<br>Write Nor               | m BV    | Vrite Aut   | • C'          | Write Au       | MKR         | 303.0 M<br>-35.13 d | Hz<br>Bm                          | FOF                                             |
|----------------------------------------------------|----------------------|----------------|------|--------------------|--------------------|----------|-----------|------------------------|------------|--------|------------------|---------------------|-------------------------------|---------|-------------|---------------|----------------|-------------|---------------------|-----------------------------------|-------------------------------------------------|
| -30 -                                              | MARK<br>303.12       | (ER<br>2 MHz   |      |                    |                    |          |           |                        |            |        | -30 -            |                     |                               |         |             |               |                |             |                     |                                   |                                                 |
| -50                                                |                      |                |      |                    |                    |          |           |                        |            |        | -50 -            |                     |                               |         |             |               |                |             |                     |                                   |                                                 |
| -60                                                |                      |                |      |                    |                    |          |           |                        |            |        | -60 -            |                     |                               |         |             |               |                |             |                     |                                   |                                                 |
| -70                                                |                      |                |      |                    |                    | 1<br>ਨੇ  |           |                        |            |        | -70 -            |                     |                               |         |             |               |                |             |                     |                                   |                                                 |
| -80                                                |                      |                |      |                    |                    |          |           |                        |            |        | -80 -            |                     |                               |         |             |               |                |             |                     |                                   |                                                 |
| -90                                                |                      |                |      |                    |                    |          |           |                        |            |        | -90 -            |                     |                               |         |             |               |                |             |                     |                                   |                                                 |
| -100                                               |                      |                |      |                    |                    |          |           | ulkakul <mark>k</mark> |            |        | -100 -           | n an an             | <mark>fa þ. í halda du</mark> |         | ndke probid |               | haifailte      | n lip, Nord | ahlapard            |                                   |                                                 |
| -120                                               |                      |                |      |                    | <u>1.1.1.1.1.1</u> |          |           |                        |            | halant | -120 -           |                     |                               |         |             |               |                |             |                     |                                   |                                                 |
| -130<br>CENT                                       | ED 303 00            |                | 1    | [ <mark>9</mark> ] | MIL.               |          | SPAN      |                        |            |        | -130<br>STAR     |                     |                               |         |             | ld, jul () lu | Lindhu Laiz, r | Juliu Juliu |                     | <mark>(alla)       </mark><br>;uz | <u>, 14   14   14   14   14   14   14   14 </u> |
| IRBW 100 KHz VBW 100 KHz SWP 20 ms His ATT 0.00 dB |                      |                |      |                    |                    |          |           |                        |            |        | RBW 1            | 00 kHz              | v                             | /BW 100 | ) kHz       | S\            | VP 290         | ms H        | IS ATT              | 0.00 dB                           |                                                 |

# AdValue Photonics Tuning for phase locking

## Mode-locking rep rate tuning for phase locking





# Phase synchronization

## Harmonic tone heterodyning with 1GHz RF signal





# Fiber amplifier chain





## Large-mode-area fiber

### **Double-cladding Yb-doped large-mode-area fibers**



### Non-PM

ΡM



## 200W power amplifier

## Output power from a Yb-doped fiber power amplifier at 1030nm



19







# **Frequency doubling**





20



- Optimize the design for a robust laser oscillator
- Demonstration of phase synchronization to GHz RF signal
- Prototype the laser unit



Thank you

## Questions?

