

Holographic Data Storage DOE Nuclear Physics Phase II

Fasttrack

Dr. Ken Anderson, CEO, PI DOE Phase II SBIR Conference August 10th, 2016

Overview

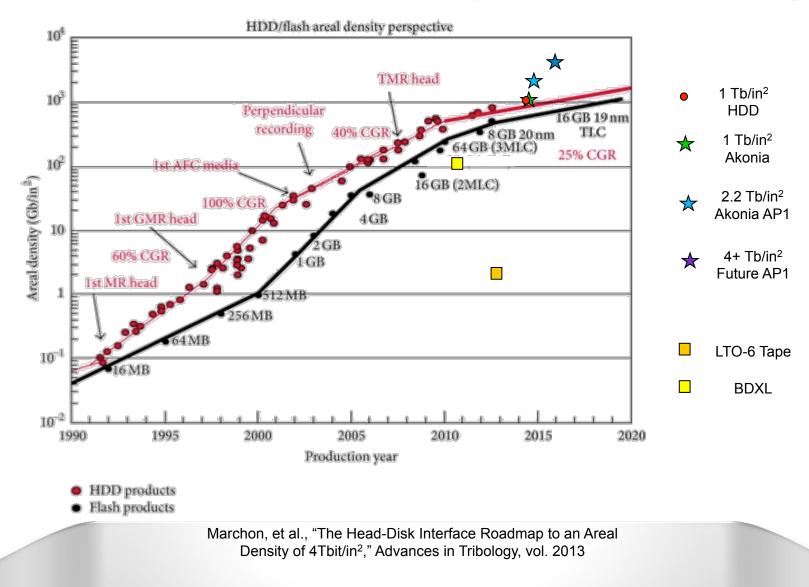
Company Overview Motivation for Holographic Data Storage What is Holographic Data Storage? SBIR Goals and Accomplishments Phase I & 2 Goal Overview Storage Density Demonstrations Media Development Laser Development

Akonia Holographics

Akonia Holographics is the world leader in the development of ultra-high performance Holographic Data Storage for the backup and archive storage market

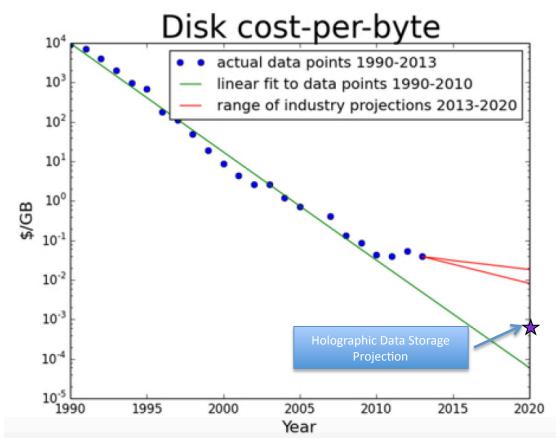
Company Overview

- Founded in August 2012
- 15 employees/contractors
- Leveraging over \$100M in technology development from Bell Labs and InPhase Techologies from 1995 to 2010
- > 165 US and Foreign patents in drive and media
- 12,000 sqft facility with over \$20M in electronics/optical equipment
- <u>Expertice</u>: holography, optical design, photopolymer chemistry, data storage, electronics/FPGA design



- "Large scale data storage systems are needed to <u>store, access, retrieve,</u> <u>distribute</u>, and process <u>data</u> from experiments conducted at large facilities. The experiments at such facilities are extremely complex, involving thousands of detector elements that produce raw experimental data at rates up to a GB/sec, resulting in the annual production of data sets containing hundreds of <u>Terabytes (TB) to Petabytes (PB)</u>."*
- "The DOE is looking for new techniques for <u>multi-petabyte-scale systems</u> that are optimized for <u>infrequent data access</u>, emphasizing <u>lower cost per</u> <u>byte</u> than current disk systems, <u>lower power usage</u> than most disk systems, and <u>lower access latency</u> to data than current tape systems."*

... In a nut shell, you guys store a lot of data, want To store it cheaply, and want faster access to it



Motivation 2: Areal Density Trends are Slowing

\$/Gbyte is going to become a dominant IT cost

Because... Demand for Data Storage Is still increasing at 40% per year

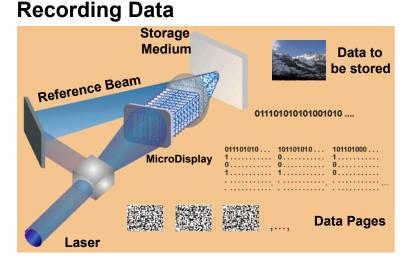
<u>Current:</u> HDD: \$24/TB Holographic: \$12/TB

<u>2020:</u> HDD: \$10/TB Holographic: <\$1/TB

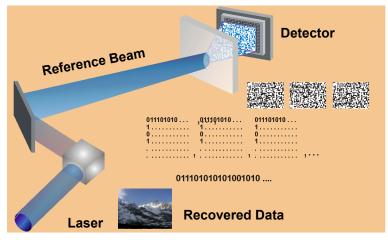
A Brief Background on Holographic Data Storage

How does Holographic Storage Work?

• How is data recorded?


Data is first encoded into a 10 megapixel image. Using a laser, the data is then focused into a 600um x 600um spot within the media during a 300us exposure. The media records the data using a "reference beam" to create a unique pattern in the media.

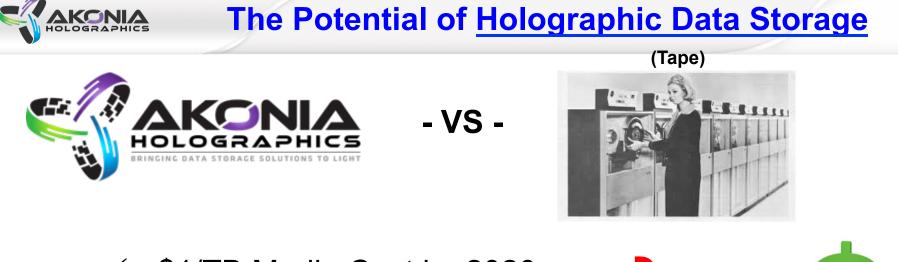
• How is capacity achieved?


More than 600 images are recorded into each spot, each with its own unique angular address. In one disk, up to 28k spots are recorded giving a capacity of 2TBytes: the equivalent of 425 DVD's or 80 BluRay disks.

How is information read out?

Readout is done by Illuminating the spot with a laser at the appropriate angle and then using a high speed camera to capture the data image at over 500fps.

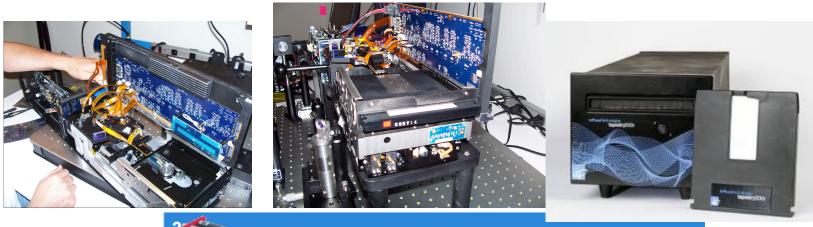
Reading Data

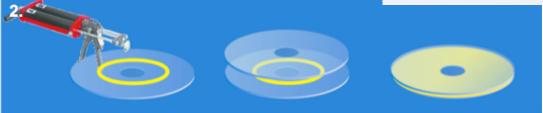


Surface Versus Volumetric Recording

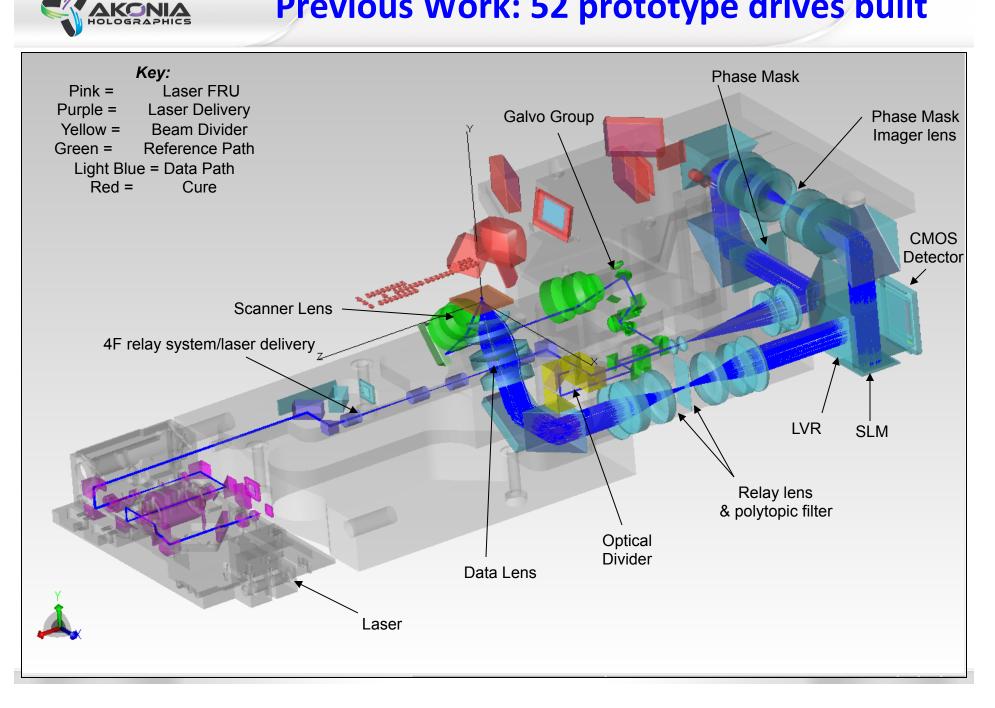
Blu-ray Holographic data stored in 3D volume data stored on 2D surface Data 800 Images x 10M bits/image x 28k locations/disk Layer - 1um 1.2mm 1.5mm 600um 25 Gbytes/disc >4 Tbyte/disc

160x Data Capacity Improvement Over Blu-Ray 3D + Plastic = Huge Cost Advantage

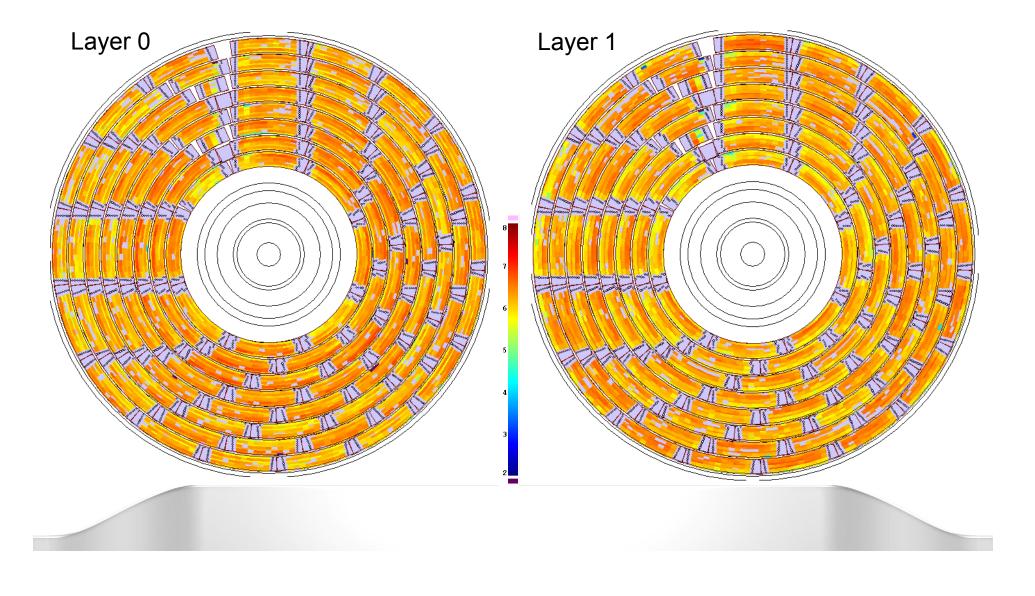

- ✓ <\$1/TB Media Cost by 2020</p>
- ✓ 5x Better Cost/TB (System)
- ✓ 10x Better Total Cost of Ownership
- ✓ 30x Latency Improvement (time to first data)
- 11x Energy Savings
- ✓ 2x-4x Better Footprint (high density)


Holographic Storage Wins: Cost, Footprint, Speed, and Reliability

*Note: Comparisons are made using best estimated future projections in 2020.



- ✓ 52 Fully functional prototype drives built
 - ✓ Improved from 300GB/disk to 1TB/disk with DOE SBIR
 - ✓ Fully automated hardware-based (FPGA) operation under host command interface
- ✓ 2.2 TB/card (Equivalent) Demonstrated on Testbed in Dec 2015
- ✓ 4.0 TB/card possible by 2017
- ✓ \$10M Media manufacturing build line built and refined


Previous Work: 52 prototype drives built

Previous Work: Disk Format

- 16524 books (2838 dummy books)
 - Avg. SNR ~6.1dB

DOE SBIR Grant Accomplishments: Phase 2, Year 2, Month 9 (FastTrack)

... Almost Done

- ✓ Improve Storage Density to 2Tb/in2
- ✓ Investigate and Develop Tape Library Compatible Designs
- ✓ Improve Holographic Media Dynamic Range by 5x
- ✓ Improve critical drive components to increase transfer rate from 20MB/s to >100MB/s

			DOE funded							
Performance Metric	Start	Goal	Demonstrated	Improvement	Units					
Bit Density	0.3	2	2.2	7.3x	Tbit/in2					
Media Dynamic Range	4	16	60	15x						
Laser Power	30	60	35	1.17x	mW					
Media Sensitivity	5.00E-06	1.00E-05	1.10E-04	22x	cm^2/mJ					
Media positioning speed	500	100	30	16.7x	ms					
Mirror positioning speed	1	0.1	0.1	10x	ms					
Microdisplay pixel count	1.4	5	10	7.1x	MegaPixels					

- ✓ Improve Storage Density to 2Tb/in2
- ✓ Investigate and Develop Tape Library Compatible Designs
- ✓ Improve Holographic Media Dynamic Range by 5x
- ✓ Improve critical drive components to increase transfer rate from 20MB/s to >100MB/s

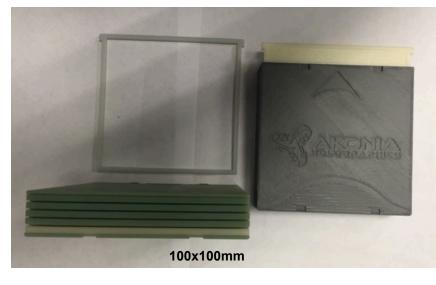
			DOE funded							
Performance Metric	Start	Goal	Demonstrated	Improvement	Units					
Bit Density	0.3	2	2.2	7.3x	Tbit/in2					
Media Dynamic Range	4	16	60	15x						
Laser Power	30	60	35	1.17x	mW					
Media Sensitivity	5.00E-06	1.00E-05	1.10E-04	22x	cm^2/mJ					
Media positioning speed	500	100	30	16.7x	ms					
Mirror positioning speed	1	0.1	0.1	10x	ms					
Microdisplay pixel count	1.4	5	10	7.1x	MegaPixels					

- ✓ Improve Storage Density to 2Tb/in2
- ✓ Investigate and Develop Tape Library Compatible Designs
- ✓ Improve Holographic Media Dynamic Range by 5x
- ✓ Improve critical drive components to increase transfer rate from 20MB/s to >100MB/s

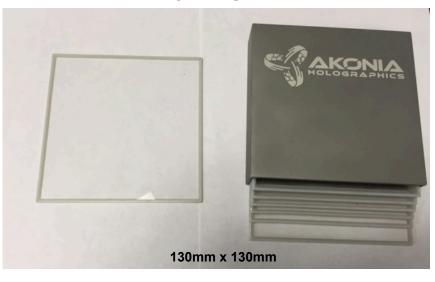
			DOE funded								
Performance Metric	Start	Goal	Demonstrated	Improvement	Units						
Bit Density	0.3	2	2.2	7.3x	Tbit/in2						
Media Dynamic Range	4	16	60	15x							
Laser Power	30	60	35	1.17x	mW						
Media Sensitivity	5.00E-06	1.00E-05	1.10E-04	22x	cm^2/mJ						
Media positioning speed	500	100	30	16.7x	ms						
Mirror positioning speed	1	0.1	0.1	10x	ms						
Microdisplay pixel count	1.4	5	10	7.1x	MegaPixels						

✓ Improve Storage Density to 2Tb/in2

- ✓ Investigate and Develop Tape Library Compatible Designs
- ✓ Improve Holographic Media Dynamic Range by 5x
- ✓ Improve critical drive components to increase transfer rate from 20MB/s to >100MB/s


Phase 2, Year 2 Emphasis

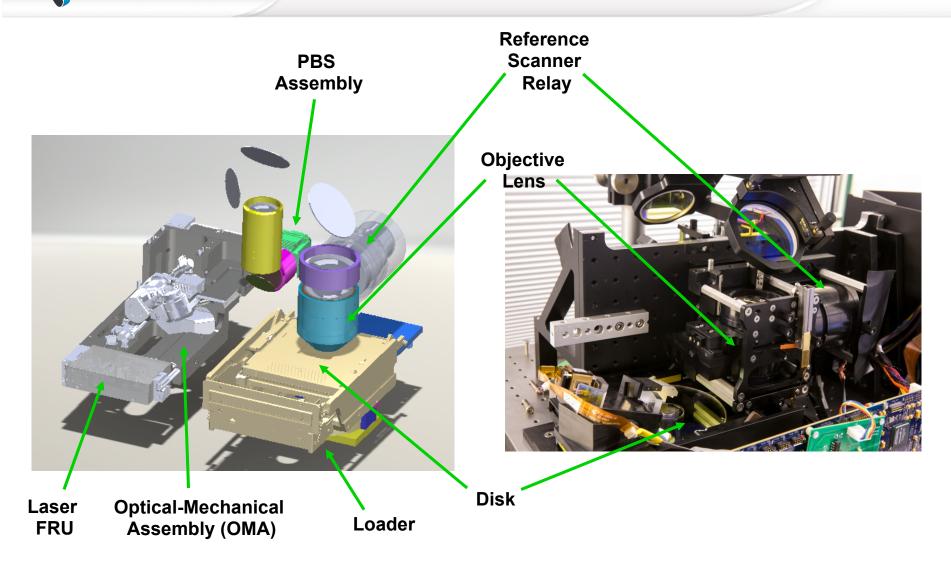
			DOE funded							
Performance Metric	Start	Goal	Demonstrated	Improvement	Units					
Bit Density	0.3	2	2.2	7.3x	Tbit/in2					
Media Dynamic Range	4	16	60	15x						
Laser Power	30	60	35	1.17x	mW					
Media Sensitivity	5.00E-06	1.00E-05	1.10E-04	22x	cm^2/mJ					
Media positioning speed	500	100	30	16.7x	ms					
Mirror positioning speed	1	0.1	0.1	10x	ms					
Microdisplay pixel count	1.4	5	10	7.1x	MegaPixels					



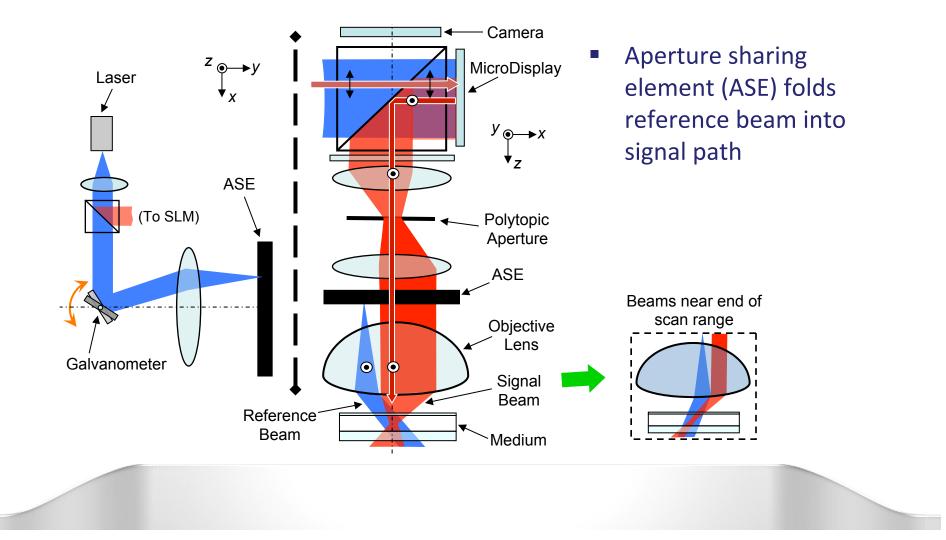
DOE Work: 2 Card Formats Developed

LTO size

BluRay Magazine Size



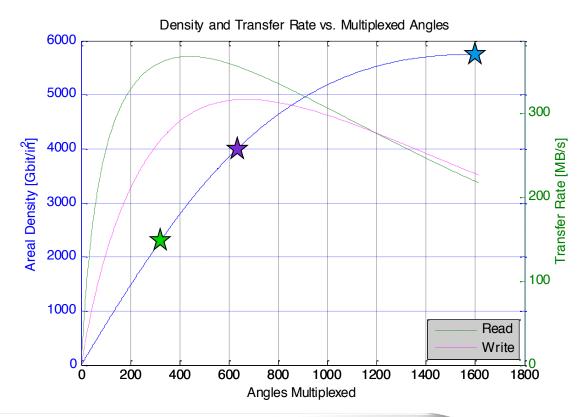
Ready to inject media



 Dynamic aperture recording implemented by scanning galvo while composing shrinking pages on the SLM

- March 2014: 1st Holograms written and recovered
- May 2014: 1.0 Tbit/in² demonstrated
- June 2014: 1.35 Tbit/in² (static page)
- August 2014: 1.52 Tbit/in² (dynamic aperture)
- November 2014: Converted to coherent channel
- February 2015: 2.0 Tbit/in² demonstrated
- December 2015: 2.2 Tbit/in² (current areal density world record)

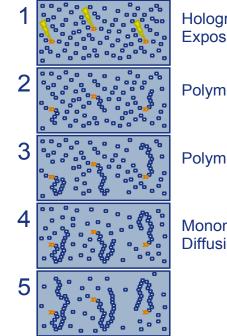
Magnetic Disk Areal Density ~ 1Tb/in2


What's next... >4 Tbit/in²?

Testbed is capable of 5.75 Tbit/in² in current configuration

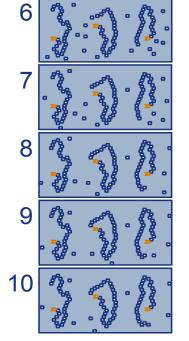
... but Media Dynamic Range prevents us reaching this

★ 2.2 Tbit/in² 640 pages
★ 4.0 Tbit/in² 1272 pages


★ 5.75 Tbit/in² 3228 pages

Higher capacity requires better media AND a bigger microdisplay

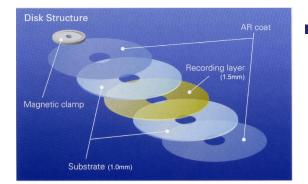
Akonia's Proprietary Holographic Recording Medium



Hologram Exposure

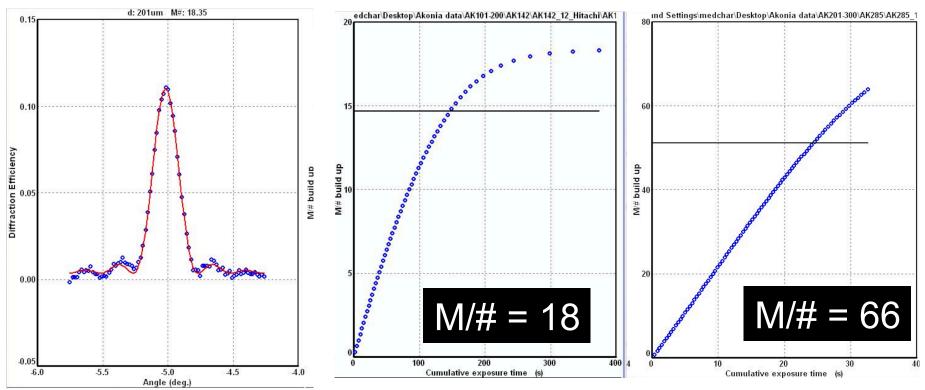
Polymerization

Polymer Growth


Monomer Diffusion

Diffusion Control

Hologram Formation


- Laser Irradiation
- Photoinitiator
- Writing Monomer
- Matrix
- Refractive Index Pattern

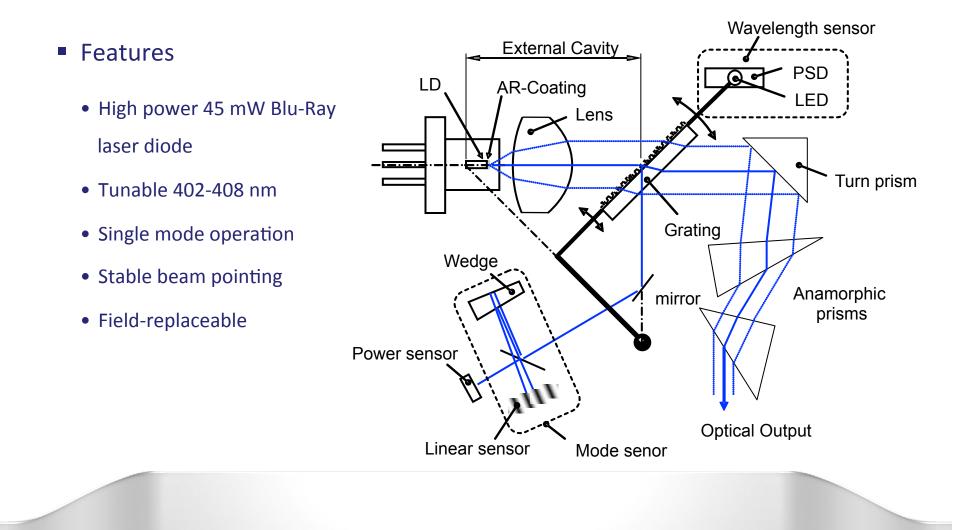
- Important properties:
 - High photosensitivity and dynamic range (*M*/#) \checkmark
 - Low shrinkage \checkmark
 - High optical quality (*Flatness, absorption, scatter...*)
 - High archival stability ("Like DNA fossilized in amber"...) \checkmark

3.7x Dynamic Range Improvement, 22x Media Sensitivity Demonstrated: August 2016

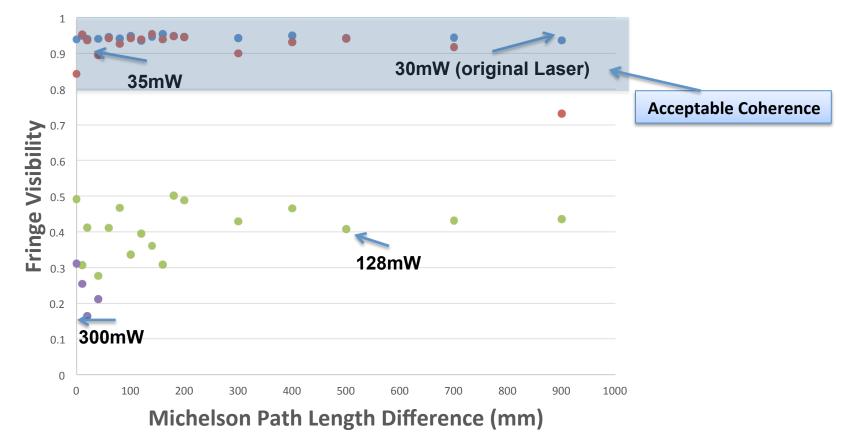
2012 Performance: M#=4 (16.5x Improvement in 4 years)


Applications of Holographic Media

Akonia Holographics Confidential



Akonia's Laser System – Turns a Blu-Ray laser diode into a high coherence laser


ECDL FRU Diagram

DOE Goal: Improve Laser Power Beyond 30mW

Fringe Visibility comparison

Note: Newer 300mW blue diodes <u>Failed</u> To Achieve High Coherence Minor increase in power achieved of 5mW

Milestones: Completed, Failed, New

Milestones		Task Completion Date										
		Phase 1				Phase 2, Year 1				Phase 2, Year 2		
Phase 1 Complete concept holographic library design Assessment of integrating holographic drive and media into LTO libraries complete Concept designs complete of square holographic media SLM specification complete 1 Tb/in2 bit density demonstrated		2	2 2	22								
Phase 2, Year 1 Form factor of library drive complete Prototype of new media formats complete Establish high-bandwidth SLM and Camera vendors Media sensitivity of >2x completed and initial tests finished Initial design of media XY stage complete Investigate off-the-shelf solutions for XY media positioning Improve Media Dymamic Range by 2x New ECDL (Laser) prototype design complete Laboratory proof-of-concept of low power laser complete					*	2	\$	2 2		2 2 2	۲	
Phase 2, Year 2 Prototype design of media XY stage complete and built Prototype manufacturing process for square media complete Prototype media magazine complete Laboratory proof-of-concept of high power laser complete (Failed) 2 Tb/in2 bit density demonstrated Holographic model of wavefront tolerance complete Media sensitivity by >20x Improve Media Dynamic Range by 4x Process development for optically flat square holographic media Demonstrate 2.2Tb/in2 bit density (world record)					~	2	2 2		۲	x	<pre>< < <</pre>	*

- We are actively seeking \$25M in investment to begin building new manufacturing prototypes for commercialization
- Akonia anticipates first beta units could be produced within 24 months of funding.
- We are seeking a large scale manufacturing partner to help with DFM (Design for manufacturing)

Thank You!

Dr. Ken Anderson, CEO <u>ken@akoniaholographics.com</u> (303) 776-1968 ext. 1201

