

Development of a nanomaterial anode for a low voltage proportional counter for neutron detection

Matthew Craps PI NanoTechLabs Inc. Jay Gaillard Savannah River National Lab Tim DeVol Clemson University DoE Nuclear Physics STTR Grant Number: DE-SC0011350

Outline

- Company overview
- Objectives
- Modeling
- Design
- Experimental
- Upcoming work

www.nanotechlabs.com

Sealants, Composites, EMI shielding, Thermal Interface Material

•Small business

Veteran-owned

•Founded in 2004

Nanotubes and high aspect ratio materials

Green ionic liquids for phase change, batteries, lubricants

Synthetic specialty chemicals, oil and gas, remediation, water treatment

Program Objectives

- Develop and test a B₁₀ coated nanoscale proportional counter as an alternative to current He-3 detectors
- Determine the pitch vs. height parameters to yield the highest efficiency
- Pattern, fabricate, and densify controlled CNT arrays
- Model the proportional volume
- Fabricate and test prototype

Relevance to Nuclear Physics

- Roughly 1300-1500 Radiation Portal Monitors in use in the USA
- He-3 is expensive, and in a shortage
- Current detectors need high operating voltages
- There exists a potential threat that needs more detectors

Advantages

- Nano-Proportional counter utilizes lower voltages
- An opportunity to increase sensitivity
- Decreased size and cost
- Better selectivity

Schedule and Deliverables

	Months											
Task/Description	2	4	6	8	10	12	14	16	18	20	22	24
1. Nanotube Array Growth and Densification												
2. Boron Coating for Neutron Detection												
3. Screening of Densified Arrays												
4. Modeling Detector Configuration												
5. Neutron Detection												
6. Prototype Fabrication and Testing												

Electrostatic Modeling

• Electric field E is governed by:

$$\nabla \cdot (\varepsilon_0 \varepsilon_r E) = \rho$$

• And

 $E = -\nabla V$

 Electric field at the top of nanopost in the parallel plate configuration

$$E = \left(\frac{h}{r}\right)\frac{V}{d}$$

• ε_r is the relative permittivity of the material, ε_0 is the electric constant, and V is the electric potential

h is the nanopost length, *r* is nanopost radius, and *d* is the distance between the parallel plates

Theoretical performance for neutron detection

- The neutron is converted through the nuclear reaction:
- ${}^{3}\text{He} + n \rightarrow {}^{3}\text{H} + {}^{1}\text{H} + 764 \text{ KeV}$
- Thermal neutron's reaction with ¹⁰B:
- ${}^{10}\text{B} + n \rightarrow {}^{7}\text{Li} + \alpha + \gamma, 2300 \text{ KeV} (94\%)$
- ${}^{10}\text{B} + n \rightarrow {}^{7}\text{Li} + \alpha, 2780 \text{ KeV} (6\%)$

- The thermal neutron (n) is absorbed by the ³He and decays to produce tritium (³H) and protium (¹H) with 764 KeV of kinetic energy going into tritium and protium which then are detected by creating a charge cloud in the stopping gas of a proportional counter.
- Excess energy is associated with kinetic energy of the recoil nucleus (⁷Li), gamma ray (γ) and alpha particle (α)

Model setup

- Experimental array
 - Silicon posts are approximately cylindrical
 - Large arrays of posts in square grid pattern with controlled pitch

- Simulated array
 - Cylindrical posts
 - Single post with symmetry conditions represents infinitely large array

Effect of Pitch

Effect of Post Dimensions

Alternative Anode Design

 Conductive post and substrate as single unit

- Teardrop-shaped proportional volume
- Many field lines/electron paths bypass proportional volume

 Anode wires through insulating substrate

- Fairly uniform proportional volume thickness over post
- All field lines lead through proportional volume
- Better detection?

Parallel Plate Design

1 to 2.5 μm thick Boron containing layer

An example of 5 2mm thick Nanoproportional counters stacked. Need nonconducting spacer An example of 6 Nanoproportional counters stacked in an alternating pattern. No need for spacer, can share electrodes, and get additional B layer and gas fill volume in total volume.

Nanoproportional

Device Design

- Current nano-PC packaging
- Prototype of parallel plate detector

Catalyst Deposition

SEM of Catalyst Islands

CNT growth

CNT Array growth

6 micron diameter x 10 micron pitch x 10 micron tall

Densification of the 6x10x10 CNT Arrays

Preliminary results

Summary

- Modeling to determine pitch to height ratio
- Patterning
- Deposition
- Synthesis
- Densification
- Testing

Upcoming work

- Thinner catalyst layers
- Water vapor
- Densification
- SOP's
- Testing
- Prototype build
- Further modeling

Acknowledgements

- Savannah River National Lab
 - Jay Gaillard
 - Matthew Howard
 - Steve Serkiz
 - Lindsay Sexton
 - Brent Peters
- Clemson University
 - Tim Devol
- NTL
 - Chris Beauchamp
 - Rich Czerw
- DoE Nuclear Physics STTR Grant Number: DE-SC0011350

Thank You

Matthew Craps

NanoTechLabs Bigger innovations through smaller materials

mcraps@nanotechlabs.com (336)849-7474

Questions?