

Solid-State Neutron Detectors with Integrated Electronics for Nuclear Physics - DE-SC0011280

- Neutron Detection with Plastic Scintillators coupled to Solid-state Photomultiplier Detectors

James F. Christian, Ph.D., PI, Michael R. Squillante, Ph.D.

Aug. 2016

Plastic* Scintillation Interactions & Energy Deposition

- Gammas produce Compton and photoelectrons: delta rays ~ beta
- n produce recoil protons (break bonds) and excited nuclear states (capture)
- Charged particles, $\beta,$ p+ and α
 - Excitation by collision: Bethe Bloch (linear energy transfer, LET) \rightarrow ionization
 - Cerenkov

Extracting neutron energy is "convoluted": Protons and LET

2

PSD distinguishes between gamma and neutron events

- Collection of excited states depends on LET
- Performance specifications: Light yield, FOM, and PSD threshold (depends on detector noise)

Table: Properties of fast neutron scintillators

Scintillator	λ	Light yield	Decay time	Pulse shape
	(nm)	(ph/MeV)	(ns)	discrimination
BC-408 plastic	425	12,800	2.1	poor
BC-501A liquid	425	15,600	3.2	Very good
Anthracene	445	20,000	30	poor
Stilbene	380	14,000	3.5	good
RMD plastic	440	13,000	5-10	Very good

- Emerging organic PSD materials exceeding Anthracene's Light Yield
- Plastic scintillation materials with emission-wavelength discrimination

SSPM Introduction: Array of Geiger Photodiode Elements

Radiation

- SSPMs (SiPM SSPM in Silicon
 - Gain >1,000,000
 - Very low noise
 - Robust
 - Digital (photon counting)
 - High DE
- Dark count rate has improved from a few MHz/mm² for early MRS devices to ~30 kHz/mm²

Scintillator

Program Goals

Enable experiments to explore very exotic nuclei systems, in particular with very large neutron excesses.

- Better discrimination for neutrons and gamma ravs
- Improved spectroscopy for neutrons
- Ability to operate in magnetic field

• Construct "large-volume" detector with SiPMs

P1: Scintillator Composition and SiPM Mfgr.

University of Kentucky Neutron Beam

8.3 MeV neutrons: FR001

20.8 MeV neutrons: FR001

Peak neutron energy determination is possible

Phase-2 Objectives

- Scale up to large sizes of at least 3 cm × 5 cm × 5 cm.
- Optimize optical readout platform including cooled detectors to improve lowenergy threshold
- Improve low-energy threshold (<200 keVgee)
- Demonstrate full experiment scale detector modules at NSCL.

- Kickoff meeting and preliminary design review
- 2. Finalize scintillator properties (fabrication)
- Select optical detector unit and test small scintillation samples
- 4. Critical design review
 - 5. Build processing electronics
- \checkmark 6. Design, build and test module
 - 7. Build expanded module for field use experiments

Improve Scintillator Fabrication

Materials

- Styrene
- Diphenyloxazole (PPO)
- Activated alumina
- Acetone
- Argon/Nitrogen

Box furnace – IR image of uniform temperature

Materials purification

High temperature oven

Polymerized samples in ampoules Grinding and polishing

Cast Scintillator: omit cut and polish process

Business Sensitive

Modular Design

- 2 x 2 arrays for substitution and assembly
- Individual Bias filter on each

Device connections

Additional Options

SensL

Hamamatsu

	•

				•	
· · · · · · ·	 . .<	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

• Commercially available 2×2, 4×4, and 8×8 arrays

Large-volume Prototype Detector Development

· Compression padding to hold individual scintillators in place

PCB

Compression Foam

Scintillator —— Reflector (Teflon)

Light Block

PCB

• Teflon tape for prototype reflective coatings, must optimize process for mechanical fit and minimal non sensitive detector mass

3×3 tile of 2×2 SiPMs 13

QC, Temperature and Bias Filter

- QC: good module uniformity
- Temperature: Dark count rate
- Need bias filter

241-Am/Be

25°C

0.7 0.6

0.5 Used to 0.5 Diation 0.4 Diation 0.5 Diatempediate by the second seco

0.2

0.1

Measurements at NSCL

RMD Prototype

Measurements by C. Stapels, J. Pereira, R. Zegers

Prototype at the National Superconducting Cyclotron Laboratory (NSCL)

 Compare performance to LENDA (Low Energy Neutron Detector Array) detector (bar) using LENDA Digital Data-Acquisition System (DDAS)

Energy calibration and noise floor uniformity

Segment	Noise (keVee)	Segment	Noise (keVee)	Segment	Noise (keVee)
RMD101	45	RMD104	45	RMD107	55
RMD102	64	RMD105	75	RMD108	65
RMD103	45	RMD106	65	RMD109	55

• Noise floor defined with respect to 137-Cs Compton counts

Waveform Comparison

- Baseline noise in RMD Prototype likely due to SiPM dark current (2×2-6mm×6mm SiPM array)
- The average signal-to-baseline-noise ratio is 53 and 1,300 for the RMD prototype and LENDA bar, respectively (lower due to longer/slower pulse)

Timing Characterization

Segment	Timing (ns FWHM)	Segment	Timing (ns FWHM)	Segment	Timing (ns FWHM)
RMD101	2.05	RMD104	1.98	RMD107	2.06
RMD102	2.50	RMD105	2.33	RMD108	2.29
RMD103	2.91	RMD106	3.02	RMD109	3.29

- Timing improves to ~500 ps with ~300-keV noise threshold
- Timing depends on SNR

PSD and **FOM** (for events above an energy threshold)

 FOM exhibits strong dependence on threshold (1.03 for events > 400 keV compared to 0.88 for events > 300 keV)

Milestones

ork plan		Year 1				Year 2			
		Q2	Q3	Q4	Q1	Q2	Q3	Q4	
1. Kickoff meeting									
2. Finalize scintillator properties									
Fine tune wavelength shift and establish optimal fluor concentration									
Determine cross-linker fraction for material handling and rigidity									
Scale to large volume materials									
3. Select optical detector unit and test small scintillation samples									
Optimize detector module geometry									
Build tiled array and measure response									
Quantify cooling effect on neutron energy threshold									
Design and build cooled module									
4. Design review									
5. Build processing electronics									
6. Design and build test module									
Travel to NSCL for test									
Analyze results and design improved modules.									
7. Build expanded module for field use experiments									
Send modules to NSCL for test									
Study effect of neutron damage									
Measure neutron response and absolute efficiency in high energy neutron beams									

Spring 2017 Send modules

- First prototype fabricated and tested
 - Critical Design Review to optimize performance
- Trade between segmentation and SNR performance
 - Manufacturability
- Silicon SSPMs work well for small, 1 cubic inch, scintillators
- SNR performance determines timing and PSD FOM

Extra Slides

Introduction

- Plastic Scintillation
- SSPMs
- Objective

Overview of Phase-1 Results

Phase-2 Objectives

Phase-2 Tasks

- Progress
- Measurements at National Superconducting Cyclotron Laboratory (NSCL)

Summary

Light yield in plastic scintillation materials

- Birk's equation relates light yield (dL/dx) to dE/dx (LET)
 - "S" term: photoelectron yield
 - "kB" (quenching) polyvinyl styrene: 9.0E-3 compared to 11.6E-3 g/(cm²·MeV) for PVT
- Neutron produces a distribution of recoil proton energies (impact parameters)
- Mono-energetic recoil protons produce a distribution of light amplitudes from the distribution of path lengths

Plastic scintillation performance specifications for neutron detection often in gamma-equivalent energy

Solid-state Photodetectors: Replacing Vacuum Tubes

• Typically read out scintillators using photomultiplier tubes.

Scintillators are radiation sensitive materials that produces a characteristic flash of light when a radiation event interacts with the scintillator.

• Solid-state Photo-Multiplier Detectors: viable alternative to the vacuum tube based photomultiplier tubes (PMTs).

SiPMs Compared to Other Photodetectors

Photodetectors PD: photodiode APD: avalanche photodiode SSPM: solid-state photomultiplier CCD: charge-coupled device BA PMT: bialkali PMT SBA PMT: super-bialkali PMT

 Dark count rate has improved from a few MHz/mm² for early MRS devices to ~30 kHz/mm²

Business Sensitive

Photomultiplier tube (PMT)

Objectives

- Fabricate plastic scintillators with PSD
- Measure Scintillation properties
- Demonstrate Solid-State Optical Readout and Investigate Component Integration

Met all of its objectives Successfully demonstrated the capabilities of a solid-state detectors and modules for neutron detection with PSD plastic scintillators

P1 results: Flours

5 Flours:

- Match QE of SSPM
- Improve pulse shape discrimination
- Create intermediate states with different lifetimes mid-band gap.

Fluor	Chemical name	Plastic	Peak
Abbreviation		sample	emission
		name	wavelength
BBQ	7H-benzimidazo[2,1-a]benz[de]isoquinoline-7-one	FR001	~480
POPOP	1,4-bis(5-phenyloxazol-2-yl)benzene	FR002	~410
Rubrene	5,6,11,12-tetraphenyltetracene	FR003	~600, ~380
Coumarin	7-(diethylamino)-4-methyl-2H-1-benzopyran-2-one	FR004	~460
DPA	Diphenylanthracene	FR005	~420

NSC

- Timing measurements with multiple devices indicate adequate time response.
- Electronics are a limitation
- Interested in direct calculation of time resolution from ADC (Caen) data

3 sq. mm, 5 sq. mm, and 10 sq. cm. FR001

P1-results: SiPM Device Comparisons

Excellent pulse separation on multiple devices

 RMD's Rambler CMOS SSPM device

²⁴¹Am/Be neutrons, FR001

Ketek SiPM
 ²⁴¹Am/Be neutrons, FR001

• Other work, but some obsolete: advances in SiPMs (new products)

- Define performance goals/specifications
- Fabricate and test "first article" units
 - Set up production area
 - Establish QC procedures
- Evaluate cost ladder
- Deliver first article units
- Scale up for delivery of units per month for 2 years to NSCL

Quality Control

- Measured 9 scintillators on 9 devices, and 9 scintillators on one device
- Estimates of Compton edge location by eye
- Unit performance tracks scintillator performance, showing variation is due to scintillators, not optical detectors

Detector Temperature Effects

- SensL C-Series (6mm) SiPMs coupled to FR001 were chosen as final detector components.
- Neutron energy threshold goal < 200 keVee
- Temperature cycle neutron measurements show greater PSD at lower temperatures
 - SiPM bias adjusted to keep constant gain

(Left) PSD Figure of Merit as a function of threshold energy. (Right) Threshold Energy for FOM > 1.1 as a function of temperature.

"Low" energy/amplitude events susceptible to distortion

