Production of Commercial High Specific Activity Sn-117m Radiochemical and Chelates

PI: Nigel Stevenson, Clear Vascular, Inc.

DOE-NP SBIR/STTR Exchange Meeting (August 6-7, 2015)

SBIR Funding

Funding Agency: U.S. Department of Energy

FY: 2013

Funding Opportunity Number: DE-FOA-0000782

CFDA Number: 81.049

Submission Date: December 11, 2012

Company Name: Clear Vascular, Inc.

Company Address: 21 Waterway Ave, Suite 225, The Woodlands, TX 77380

Project Title: Production of Commercial High Specific Activity Sn-117m Radiochemical and Chelates

Principal Investigator: Nigel Stevenson, Ph.D.

Topic Number / Subtopic Letter: 36 b (2012 Topics)

Phase I Grant Award No.: 99475S12-I

Unique Characteristics of Sn-117m

Mono-e ~140 Ke have an	Intensity, %	Energy, KeV	Major Emissions
≻Low	91.0	3	Auger-L
	10.8	21	Auger-K
hospi	66.3	126.8	CE*-K1
	11.9	129.4	CE-K2
≻C.E.	27.3	151.6	CE-L1
apopu	1.5	154.1	CE-L2
Half-life	5.6	155.1	CE-M1
treatme	86.4	158.6	Gamma
≻Log i			
≻Cell dosing			

*C.E. = Conversion Electron

No High Energy Emissions

- Mono-energetic conversion electrons of ~140 KeV discrete energy for therapy have an average range of ~300 µm
 - Lower external radiation
 - Easier handling and reduced hospitalization containment
 - C.E. have been proven to induce apoptosis
- Half-life of 14 days is consistent with treatment requirements
 - Logistic flexibility
 - Cell division cycles and therapy dosing
- Gamma ray (159 KeV) similar toTc-99m (140 KeV) allowing for existing standard gamma camera imaging & techniques

Comparing Energy Types for Radiopharmaceuticals

Well-Defined Range of Sn-117m in Tissue

• Confirmation by G. Sgouros (JHU) of relatively uniform dose deposition and 300 μ m range of C.E. in tissue

Tin-117m is Unique

• No other isotope has the characteristics that are so ideally suited to our cardiovascular application

Tin-117m: Past Work & Development

- Suresh Srivastava, BNL, performed Bone Pain Palliation ([Sn-117m]-DTPA) studies and trials
 - 125+ subjects successfully treated
- **Cardiovascular** Vulnerable/Unstable Plaque ([Sn-117m]-DOTA-Annexin)
 - Imaged in human clinical trials
 - Therapy in animals confirmed
- Rheumatoid Arthritis (Sn-117m colloid)
 - Animal models
- Lymphoma and Leukemia
 - Labeled molecules targeted conditions
- Linking to Antibodies
 - Excellent labeling efficiencies
- Medical Devices: Colangiocarcinoma Stent
 - IP for superior electroplating method

Scope of Project

• Aim 1: Reproducibly prepare <u>high specific activity Sn-117m</u> in large enough quantities to perform chelation and conjugation experiments that could be used in human clinical studies.

Successfully Completed

- Aim 2: Prepare at least <u>two different chelates</u> of high enough purity to evaluate *in-vivo* or *in-vitro* for biological activity.
 Successfully Completed
- Aim 3: Show that it is possible to <u>scale up</u> the production of Sn-117m to commercially relevant quantities.
 Successfully Completed

Examples of SBIR program achievements

- New separation method to extract Sn-117m from Cd-116
 - Complete in a few hours
 - Cd:Sn below 1:1
 - >99.7% Sn-117m
 - Scalable to multi-curie
 - Straightforward and reliable commercial cGMP method
- Labeled molecules and other products
 - Large biologics
 - Small targeting molecules
 - Long-term SPECT imaging agents
 - Radiocolloids
 - Electroplated stents
- Multiple production centers being assembled to form a network
 - Manufacturing security

Project Timeline

SBIR Phase II

					_		-									12	2/7/	12	_
Task	Start	End	End 2013 2014								2015								
	otart	End	AMJ	J	s	o N	рJ	F	м	AN	1 J	J	A	s	0	ND	J	FN	1
1. a.& b. High sp. act. Sn-117m - improved yields and efficencies	4/1/13	3/31/14	4/1						3/3	1									
c. Accelerator upgrade study (UW)	7/1/13	6/30/14		7/1							6/:	7 30							
d. Implement cGMP operation	5/1/13	12/31/14	5/1													12	7 2/31		
2. a.&c. Produce Sn-117m chelates	6/1/13	4/30/14	6/1						4	4/30)								
b. Label small molecules with Sn-117m	8/1/13	12/31/13		<u> </u> 8/1		1	7 2/3'	1											
d g. Label large molecules with Sn- 117m	1/1/14	12/31/14					1/1		1							12	2/31		
 a.& c. Calculations and analysis of scale-up feasibility (yields, costs) 	4/1/14	12/31/14							4/1							12	2/31		
 b. Experimental (chemistry) verification of scale-up 	1/1/13	6/30/14					2/3	1	1		6/3	7							1
 d. Study of supply potential from existing accelerator 	7/1/14	9/30/14									4	/1		9/3	30				
e. Design and cost study for a dedicated production facility	10/1/14	12/31/14												10	/1	12	/31		1
4. Reporting: Mid-point	2/1/14	3/31/14					4	2/1	3/3	1									1
Final Report	1/1/15	3/31/15														1	/1	3	

Synergy with DOE-NP Interests

US DOE SBIR/STTR Topics 2015 (Phase I) section 26. NUCLEAR PHYSICS ISOTOPE SCIENCE AND TECHNOLOGY:

- "... new technologies must have the potential to ensure a <u>cost-effective</u> and stable <u>supply</u> and <u>distribution</u> of such isotopes. Examples of high priority isotopes include ... dual-purpose ('theragnostic') radioisotopes, such as high specific activity ... <u>tin-117m</u>..."
- "High-purity isotope products are essential for <u>high-yield protein</u> <u>radiolabeling, for radiopharmaceutical use</u>, or to replace materials with undesirable radioactive emissions. Improved product specifications and <u>reduced production costs</u> can be achieved through improvements in separation methods."
- "Sn-117m has favorable nuclear properties for both imaging and therapy. <u>Scaled up production for the supply of commercial quantities of high specific activity Sn-117m</u> would be of high interest."

Production of HSA Sn-117m

Alpha + Cd-116

Performed at the University of Washington Medical Center. Other sites in development.

Electroplated target and Irradiation Room at UW

Clear Vascular, Inc.

Collaborators, Manufacturing and IP

- CVI has been actively involved with over 40 institutions worldwide
- CVI has a cGMP process and product (~90 manufacturing procedures with ~30 support procedures) used in the clinical trials:
 - CVI has two dedicated cGMP suites to manufacture the product
 - CVI has highly innovative radiochemistry collaborators
- Over 50 patents filed/licensed with 30 issued and additional extensive trade secrets

Radiochemical Preparation

Final Product Manufacturing

Clear Vascular, Inc.

- Germed in 2005
- □ Virtual facilities; Based in TX
- First product: Radiopharmaceutical agent, Tin-Annexin, for imaging and therapy of vulnerable and unstable plaque
- □ Phase 2 imaging trials complete; preparing for therapeutic trials in US
- www.clearvascular.com

Clear Vascular, Inc. Summary of Studies

ANIMAL PRE-CLINICAL STUDIES COMPLETED AND HUMAN CLINICAL STUDIES - COMPLETED AND ONGOING

- Normal mouse and rabbit bio-distribution (BD) and atherosclerotic rabbit BD, therapy and imaging studies
- Pig and rabbit stent therapy studies
- Normal mouse sterile abscess pK studies
- Preliminary and validating Apo-E mouse therapy studies
- Rat toxicity studies

ANIMAL Preclinical Studies CAROTID #1 (Very Low Dose Study)

- Imaging and pathology on 6 CEA subjects
- 500 μCi cGMP dose to determine dosimetry for Carotid #2 study
- Identification by ultrasound (U/S) and histology of VP
- Binding to VP

- Imaging/pathology on 9 CEA subjects dose
- 3 mCi cGMP dose
- Identified VP by U/S and histology
- Identified VP by autoradiography co-registration
- Imaging of AAA
- Addition of therapeutic markers on 5 CEA subjects
- Plaque dosimetry

CAROTID #2 (Low Dose Study)

Sn-117m Companies and IP

Sn-117m Colloid Studies

Retention of colloid in normal rat joint:

Time	7 days	2 weeks	6 weeks
Retention	>99.9%	>99.9%	99.8%

Sn-117m Colloidal Aggregate Particle Size at time of manufacturing

Ongoing studies:

- Controlling size and distribution
- Shelf-life studies
- Storage/Shipping temperature
- Retention/Biodistribution
- Scale-up

Stability studies - colloid size distribution after 7 days at room temp

Rat OA Trial - Sn-117m colloid

Timeline

DATE: 7/13/2015

2014 2015 2016 AUG SEP NOV DEC FEB MAR MAY JUN AUG 5EP NOV DEC JAN FEB MAR APR JUN JULY AUG SEP MAY JUN ÷ + ÷ ÷. 1 1 Ŧ. ٠ Ŧ Ŧ 5/2/2014 6/27/2014 8/1/2014 Tin Production 10/10/2014 3/20/2015 5/8/2015 7/24/2015 Tin Production 10/16/2015 1/08/2015 1/15/2016 Tin Production Run #5 Tin Production Run #10 Run #1* Run #2** Run #3 Run#4 Run#6 Run#7 Run #8 Run #9 Rodent studies (3 t_{1/2}) (2 t1/2) Normal Meniscal tear GMP/GLP certified 1 DA **GMP** material produced at ITG: Biocompatibility with GMP material GLP Rodent studies (5 t_{1/2}) • Normal Meniscal tear OA Study dogs (n=5) Trend Analysis • Effect and safety for 3 North American Veterinary t1/2 Conference Anouncement Owner dogs (n=24) - University of Missouri • Two doses with durable response Owner dogs (n=24) - TBD • Two doses with durable response **Tin-Colloid COA Commercial Launch**

R-NAV Tin-Colloid Timeline - Updated July 13, 2015

* The production run used for colloid and radiochemical purification development work.

** Tin production run used for colloid work and early animal trials.

IPP Project: Sb(p,x)Sn-117m

- IPP Program, under Contract # DE-AC02-98CH10886 at Brookhaven National Laboratory
- CRADA with Clear Vascular
- Work carried out at RIAR and INR (Russia)
 - Increase reactor yield and spec. act. (LSA product)
 - Feasibility of accelerator production (NCA/HSA product)

IPP Project: Sb(p,x)Sn-117m

- Yields, spec. act., byproducts determined
- Method feasibility established
- Commercialization not yet achieved:
 - Electroplated targetry desirable/required
 - Chemistry needs to be simplified

Plans to Supply/Use HSA Sn-117m

□SnMan – production of radiochemical and labeled products

- $\hfill\square$ Reactor production optimized
- \Box Cd-116(α ,3n) accelerator method optimized
- Sb(p,x) accelerator method needs more work further grant (SBIR) support needed

First commercial company starts in 2016; others to follow
 Oncology, CV, RA, Neurology applications in development
 Veterinary applications (OA, laminitis, oncology)
 Academic and commercial institutions now testing Sn-117m

Without DOE-NP SBIR and other support this would not have been possible

