High-Performance Plasma Panel Based Micropattern Detector

August 7, 2015 DOE-NP SBIR/STTR Exchange Meeting Gaithersburg, MD

P. S. Friedman

Integrated Sensors, LLC, Ottawa Hills, Ohio (419-536-3212) www.isensors.net

Program Subcontractors & Principal Collaborators:

R. L. Varner Jr. <u>Oak Ridge National Laboratory</u>, Physics Division, Oak Ridge, TN

C. Ferretti, D. S. Levin, C. Weaverdyck, B. Zhou <u>University of Michigan</u>, Department of Physics, Ann Arbor, MI

Plasma Panel Sensor (PPS)

- The PPS, conceived as a high-performance, low-cost, particle detector, based on *plasma-TV display* panel technology.
- Each pixel operates like an independent <u>micro-Geiger counter</u>, activated by <u>direct</u> ionization in the gas, or <u>indirect</u> ionization via a conversion layer.
- Both "<u>open</u>-cell" and "<u>closed</u>-cell" PPS devices based on <u>direct</u> ionization are the primary focus of our research efforts.

PPS Detector Goals

- Scalable, low mass, long life, inexpensive
 - *cm* to *meter* size, with *ultrathin glass & foil* substrate capability
- Hermetically sealed & rad-hard material structure
 - no gas flow system & robust construction

• Performance

- Pixel efficiency: ≈ 100%
- Time resolution: ≈ 1 ns
- Granularity: 200 μm
- Spatial resolution: **< 100 μm**
- Response range: $\approx 1 \text{ Hz/cm}^2$ to at least 10⁶ Hz/cm²
- Gas pressure operational range: \approx 760 to < **100 Torr**
- Primary Applications *Particle Tracking & Active Pixel Beam Monitors**
 - Research: Nuclear physics / high energy physics
 - Medical: Particle CT imaging (NIH) / particle beam therapy (NCI)
 - Neutron Detection: Neutron scattering (DOE-BES) / DHS-DNDO

Sources Used for Testing

Cosmic-Ray Muons (≈ 4 GeV at sea-level)

Muon Beam: 180 GeV range (at H8-CERN for high energy physics)

Beta Particles (max. energy): ¹³⁷Cs (1.2 MeV), ⁹⁰Sr (2.3 MeV), ¹⁰⁶Ru (3.5 MeV)

Proton Beam: 226 MeV (proton beam cancer therapy & proton-CT)

Neutrons: Thermal neutrons (*neutron scattering & homeland security*)

Gamma-Rays: ⁶⁰Co (1.2 MeV), ¹³⁷Cs (662 keV)

UV-Photons: "Black UV-lamp" with emission at 366 nm

"Open-Cell" Commercial Plasma Panel

- Columnar Discharge (CD) Pixels at intersections of orthogonal electrode array
 - Electrode sizes and pitch vary between different panels

PPS with CD-Electrode Structure

"Open-Cell" Structure

(≈ 20-25% active cell/pixel fill-factor)

Source Moved in 0.1 mm Increments

(1 mm pitch panel)

Collimated β–Source Position Scan (¹⁰⁶Ru)

Collimated β–Source Measurement (106 Ru)

Stability – Response to Cosmic Muons

"First" PPS Neutron Detection Results

- ³He gas mixture at 730 Torr with 0.3 mm gas gap
- Geant4 simulation (GE) of the neutron capture rate based on source activity: 0.70 ± 0.14 Hz
- PPS measured rate at GE: 0.67 ± 0.02 Hz

≈ 100% of captured neutrons were detected*

*cannot do gamma discrimination, but can be almost gamma "blind"

Beam Energy Loss in UltraThin Glass vs. Ti-foil

(Application: Active Pixel Beam Monitors)

Energy Loss is 25 μm thick glass cover PPS for selected Ion Beams

Energy (MeV)/A	Ion Energy (MeV)	Energy loss in Glass (MeV)	Ener MeV	gy loss in <u>Gas</u> (# ion pairs)
3.0 (Ni-64)	192	190	0.13	(4,700)
3.0 (Sn-124)	372	348	0.57	(21,000)
3.0 (U-238)	714	570	1.52	(58,000)

(gas is 0.50mm of Ar at 200 Torr; no nuclei get through the glass at 1MeV/A)

Energy Loss is <u>7.6 µm</u> thick <u>Ti-foil</u> cover PPS for selected Ion Beams (gas is 0.50mm of Ar at 200 Torr)

Energy (MeV)/A	Ion Energy (MeV)	Energy loss in Ti-foil (MeV)	Ener MeV	r gy loss in <mark>Gas</mark> (# ion pairs)
1.0 (Ni-64)	64	60.5	0.19	(7,300)
1.0 (Sn-124)	124	111	0.47	(17,000)
1.0 (U-238)	238	199	0.99	(37,000)
3.0 (Ni-64)	192	81.5	0.62	(23,000)
3.0 (Sn-124)	372	160	1.18	(45,000)
3.0 (U-238)	714	298	2.14	(80,000)

Commercially Available – UltraThin Glass

M/M

Bottom Right: High resolution electrodes on 26 μ m thick glass. Electrode pitch in active area (center) is **0.35 mm**, electrode width is 0.15 mm. The narrow electrode width & spacing on the slightly bowed glass created the Lissajou type interference pattern, which is an optical artifact of image magnification and viewing angle. The actual electrode pattern is very uniform.

UltraThin PPS-2 ("open" panel)

(≈ 60-99% active cell/pixel fill-factor)

"Closed - Cell" Microcavity Concept

Electrostatic simulations in COMSOL

Electric field a few MV/m → gas breakdown

"Closed - Cell" Microcavity Concept

Perspective view of a pixel array with gas channels. Metallized cathode cavities on bottom plate with *vias* to HV bus. Anodes on top plate.

First Microcavity-PPS Panel

The Prototype – Back Plate (63 pixels)

with metal vias and gas channel

Collimated β-Source Test Setup

Typical Microcavity-PPS Signal Pulse

Pixel Response vs. HV

Pixel Isolation

Pixel Response Uniformity

Long Term Stability (9 days)

Pixel Efficiency (β-source)

Single Pixel Rate vs. Time

Uncollimated source on pixel

Pixel Time Resolution - Jitter

Summary

- PPS devices have demonstrated high gain, fast timing, and high position resolution for a variety of particle sources including: betas, protons, muons and neutrons. Three (3) different <u>ultrathin</u> PPS device structures are under development two (2) based on glass substrates and one (1) based on foil cover plates.
- The microcavity-PPS prototype shows very promising results in terms of pixel-to-pixel uniformity, time-stability of signal shape and rates, pixel response isolation, time resolutions of a few nanoseconds, excellent S/N, and efficiencies above 95% over a 100 volt range for beta-particles sources.
- Based on our successful Phase-II program, Integrated Sensors is moving forward with interested parties on ultrathin-PPS particle detectors primarily for medical and scientific applications.