GaAsSb/AlGaAs Superlattice High-Polarization Electron Source

Contract # DE-SC0007501

Principal Investigator: Yiqiao Chen, SVT Associates, MN 55344

Collaborator: DoE Jefferson Lab

DoE SBIR/STTR Exchange Meeting Aug 6-7, 2015, Gaithersburg, Maryland

SVT Associates Company Overview

Founded in 1993 as Molecular Beam Epitaxy (MBE) equipment provider

- Originated from Perkin Elmer Physical Electronics MBE Group
- One of today's leading MBE suppliers by continual product development
- Over 160 MBE systems now in the field
- Strong UHV hardware, epitaxial growth, and thin film expertise
- Technology Driven Company
 - >30% employees are PhD scientists (currently 30 employees total)
 - Key engineers > 25 years experience in MBE and UHV technology
- Diverse system product line spanning Molecular Beam Epitaxy (MBE), Thin Film Deposition (i.e. ALD, PVD, PLD and Solar), and In-situ Thin Film Monitoring
- Only MBE Company with System, Components, Process, In-situ Monitoring Expertise with our own Applications Laboratory and Characterization Facility

SVT Facilities and Capabilities

•Material deposition systems: MBE PLD, ALD

Established know-how: 8 Applications Laboratory MBE systems producing world class epitaxial growth, feeding requirements back to equipment designers

•Complete semiconductor material characterization facility: HR-XRD, FTIR, Hall, Low-temp probe station, Semiconductor parameter analyzer, ellipsometer.

•Device Fabrication

Class-100 clean room, ICP dry etcher.

Dual Oxide - Nitride MBE

Engines for Thin Film Innovation

Semiconductors Research at SVT

- US government, industrial research grants, and internal programs
- Established research collaboration with many universities: Illinois, North Carolina State, Florida, Stanford ...
- Highly technically oriented, PhD scientists & engineers
- > 100 book chapters, publications and presentations
- Significant Antimonide, Nitride and ZnO accomplishments
 - High power HEMT & MOSHEMT
 - Commercialized solar blind UV detector products
 - High efficiency photocathode
 - Innovative LED utilizing Quantum Structures
 - New mid Infrared Laser and Photodiode
 - Rainbow colored MgZnCdO

Program Overview

Program title: GaAsSb/AlGaAs Superlattice High-Polarization Electron Source

Ultimate goal: cw polarized electron sources with >80% polarization and > 10 mA beam current JLab-30% • Photocathode Testing

Present Applications:

•DoE needs: high energy accelerators •Spintronics

Potential Applications:

Surface analysisQuantum computingMagnetic imaging

Engines for Thin Film Innovation

Photocathode - General Properties

Basics of polarized electron photocathode

Semiconductor: suitable material for polarized photocathodes

Non-zero transition matrix elements for semiconductors under circular-polarized light illumination

Strained SL : highest polarization (HH-LH splitting further increased due to the quantum confinement by SL)

Initial polarization: $P_0 = (n_{\uparrow} - n_{\downarrow})/(n_{\uparrow} + n_{\downarrow})$

Why GaAsSb/AlGaAs SL?

Existing structures in literature

- 1. InGaAs/AIGaAs (strained well),70-80%, QE~0.7%
- 2. GaAs/GaAsP (strained well), 92%, measured, QE~1%
- 3. GaAs/AllnGaAs (strained barrier), 91%
- 4. AllnGaAs/GaAsP (strain-balanced), 84%
- 5. AlInGaAs/AlGaAs (strained well), 92% with QE~0.85% -

GaAs/GaAs_{0.64}P_{0.36} SL:

Best overall performance thus far, HH-LH splitting δ ~92 meV

GaAs_{0.85}Sb_{0.15}/Al_{0.4}Ga_{0.6}As SL:

•highest VB offset \implies Highest HH-LH splitting: δ ~168 meV resulting in highest initial polarization and larger tolerance to γ •Dislocation-free SL material since no strain relaxed layer required, boost QE •No need to grow very thick metamorphic buffer (5-10 µm), cost-effective

GaAsSb/AIGaAs SL Photocathode – High Polarization and High QE

Engines for Thin Film Innovation

All HH-LH splittings<95meV

Very High VB offset in GaAsSb/AlGaAs Heterostructure

GaAsSb/AlGaAs SL

comprs.comprs.comprs.comprs.-GaAsP GaAsP AlGaAs AlGaAs strained strained strained strained GaAs GaAs GaAsSb GaAsSb CB CB Е Е HH ΗH LH LH VB VB 0.0 2.0 GaAs_{0.08}Sb P-valley CBO w. r. t. InSb VBM (eV) GaAs Sb - AISb GaSb AIAs_{0.08}Sb_{0.92} AIAs AlAs_{0.08}Sb_{0.92} 1.5 VBO w. r. t. InSb VBM (eV) Al_{0.52} OAISb InAs -0.5 InAs_{0.91}Sb_{0.09} Ga_{0.5} 1.0 InSb_{0.31}P_{0.69} GaA GaSb GaAs_{0.06}Sb AI. 48 In_{0.52}As GalnSb aAs_Sb n\$b_{0.31}P_{0.69} GaAs 0.5 InP -1.0 Ga0.47 In0.53 As 0.0 T = 300 KInAs $Al_{0.52}ln_{0.48}P$ InAs____Sb -0.5 -1.5 5.8 5.8 6.0 6.2 5.6 6.0 6.2 5.6 Lattice constant (Å) Lattice constant (Å) SVT A Engines for Thin Film Innovation

GaAs/GaAsP SL

GaAsSb/AlGaAs SL: wider high P₀ range and larger tolerance to γ

Much Better Crystalline Quality Material : GaAsSb/AlGaAs SL

Distributed Bragg Reflector (DBR)

- Challenge of the epitaxial growth of high quality SL
- Slow transport of the photo-excited electrons
- The rapid spin relaxation

- The active layer of SL photocathode ~100 nm thick.
- Only a few percent of incident light absorbed at best.

$$R = \left[\frac{n_o(n_2)^{2N} - n_s(n_1)^{2N}}{n_o(n_2)^{2N} + n_s(n_1)^{2N}}\right]^2,$$

GaAsSb/AIGaAs SL Photocathode Wafer Structures

GaAsSb/AlGaAs SL photocathode w/o DBR

GaAsSb/AlGaAs SL photocathode w/ DBR

Absorption enhancement by DBR

Absorption of the superlattice with DBR and Fabry-Perot cavity together with the surface reflection and transmission into GaAs substrate

Accurate Temperature Control for Mixed Group-V Materials

GaAsSb: As/Sb composition highly dependent on growth temperature

AccuTemp[™] In-Situ 4000 Process Monitor

High Quality GaAsSb/AlGaAs SL Grown by MBE

- Strong RHEED oscillations during whole process of MBE growth
- Up to 4th order satellite peaks observable in HRXRD rocking curves

MBE Growth of AIAs/AIGaAs DBRs

Calibration of MBE growth of **AIAs/AIGaAs DBR completed**

Main challenge of growth of AIAs/AIGaAs DBR:

large growth temperature difference between AIAs (705 °C) and AlGaAs (615 °C).

A special recipe developed for MBE growth of AIAs/AIGaAs DBRs

HRXRD rocking curve for GaAs0. $_{85}$ Sb_{0.15}/Al_{0.38}Ga_{0.62}As (x14) SL grown on AIAs/AI_{0.25}Ga_{0.75}As (5.6nm/6.3nm x10) DBR on GaAs (100) substrate.

6-pair Al0.25GaAs/AlAs DBR

Measured surface reflection performed at SVT.

Modeling results of DBR with photocathode SL..

GaAsSb/AlGaAs SL Photocathode – Testing Results (1st batch)

Polarization and quantum efficiency for a fabricated GaAsSb/AlGaAs superlattice photocathode (w/o DBR).

GaAsSb/AIGaAs SL Photocathode – Testing Results (2nd batch)

Better QE by improved As capping process. The polarization is still below expected P_0 .

Engines for Thin Film Innovation

Less Strain Tolerance for Antimonides

Strain Relaxation:

•Poor quality of single crystal material due to dislocations

•Loss of strain effect on bandstructure - low polarization

Modified GaAsSb/AlGaAs SL

Remove strain relaxation

- 1. More detailed analysis on GaAsSb/AlGaAs SL (Strain relaxation percentage, XRD reciprocal space mapping)
- 2. Lower Sb composition in SL
- Minimize transport loss
- 1. Thinner AlGaAs barrier and lower Al composition
- 2. Further improvement of material quality
- Reduce spin relaxation Lower Sb and Al composition

Modified SL design (right) Initial polarization: ~96% @ y=10 meV ~93% @ y=20 meV

GaAsSb_{0.10}/Al_{0.30}GaAs, 8-10 ML

HH-LH splitting = 123.56 meV me* = 0.0755, electron mobility 3845.54

Engines for Thin Film Innovation

Summary

Progress

- SL structure design and DBR design completed.
- Two batch of GaAsSb/AlGaAs SL photocathode grown, fabricated, and tested.
- New GaAsSb/AlGaAs SL structure designed.
- Calibration of modified GaAsSb/AlGaAs SL completed
- Delay due to cryo-shroud leakage; leakage fixed and maintenance completed.

Next step

- Optimization of MBE growth of GaAsSb/AlGaAs SLs
- MBE growth and optical testing of DBRs
- MBE growth of GaAsSb/AlGaAs SL photocathodes
- Device fabrication and testing (JLab)

