Thin Diamond Time-of-Flight Detectors

Joseph Tabeling and Evan Kimberly

Outline

- A bit about Applied Diamond
- Topic and Challenges
- Progress to-date
 - Diamond Growth
 - Material Removal
 - TOF Testing
 - Characterization
 - Packaging

Applied

Diamond, Inc

Commercialization

Diamond – Types and Sources

Diamond – Finished Products (single crystal)

Diamond – Finished Products (polycrystalline)

Solicitation Topic and Challenges

beilda

Diamond, Inc

Future rare isotope beam facilities like FRIB will provide beams with unprecedented intensity, creating a challenge for single particle tracking and beam profile measurements. The development of position sensitive fast particle detectors for particle tracking/timing and with high rate capability would be desirable. Ideally these detectors would provide both position and timing measurements in a transmission mode and be radiation resistant and of very homogenous density and thickness.

> Time-of-Flight Detectors – square cm, segmented Focal Plane Array Detector – 20 cm x 2 cm, segmented

Uniform quality providing adequate S/N Uniform mass (thickness and density) Transmission mode = as thin as possible

Why Diamond?

Solid-State Ionization Chamber

- 36 e-h pairs created per um of diamond traversed per MIP
- Charges drift responding to bias voltage creating measured signal
- Trapped by defects in material so charge collection distance is average distance an e-h pair drift apart

- Radiation hardness tested and found superior with wide range of particles/conditions.
- Smaller dielectric constant provides lower capacitance and lower noise.
- Very high thermal conductivity so managing thermal load is easier.

Diamond Growth Progress

Applied

Diamond, Inc

Early results on 100µm+ films

Diamond Growth Progress

Applied

Diamond, Inc

Early vs. current results on 50 – 60 μm films

Diamond Growth Progress

Early vs. current results on 25 – 30 μ m films

Applied Diamond, Inc

Why remove material?

Early results - scCVD

Applied

Diamond, Inc

Applied

Diamond, Inc

Various methods on polyCVD – cont.

Thickness control by subtraction

Applied

Diamond, Inc

DOE NP SBIR/STTR Exchange Meeting August 6 & 7, 2015

14

Effect of back-etching on CCD

Applied

Diamond, Inc

Run 1837 Etch Comparison

Time-of-Flight Results

²³²U alpha particles with energy of 5.3MeV.

Bias = 100V Leakage < 1 nA Rise time ~ 0.8 ns Decay/rise time ~ 3:1 S/N ~ 5

Applied

Diamond, Inc

With 100 MeV/u particles, energy loss of: 11.4 MeV with ²⁰Ne 798 MeV with ²³⁸U

Time-of-Flight Results

⁴⁰Ca beam with energy of 140MeV/u.

1 – 65 μm thick 2 – 60 μm thick 3 – 50 μm thick

Applied

Diamond, Inc

Sample 3: E_{loss} = 36 MeV trigger eff = 81% @ 100V bias

Characterization Progress

I-V Testing

Applied

Diamond, Inc

Characterization Progress

Charge Collection Testing

Applied

Diamond, Inc

Characterization Progress

cryoPL Testing

Applied

Diamond, Inc

Area Dependence of CCD

3.71% for forward bias and3.54% for reverse bias.

	Forward Bias	Reverse Bias
Position 1 CCD (µm)	12.31	12.33
Position 2 CCD (µm)	12.38	11.88
Position 3 CCD (µm)	9.64	9.11
Position 4 CCD (μm)	12.94	12.23
Position 5 CCD (µm)	13.26	12.75
Standard Deviation (µm)	1.28	1.30
Variance (%)	14.92	15.57

Regrowth (Stop/Restart Run)

Applied

Diamond, Inc

50 μm original thickness 12 μm added

scCVD Growth Progress

Diamond, Inc

- cryoPL shows NV⁰ and NV⁻ approaching benchmark levels

Packaging Progress – Focal Plane Array Board

Commercialization Strategy

For scientific customers:

- Offer both poly and sc CVD diamond for detector applications
- Develop credibility with results of characterization testing
- Provide standard and custom packaging options
- Partner in development of new detector products

For industrial customers:

- Provide resource to educate and ease adoption of diamond
- Develop one-stop source for detectors using diamond

Current Commercialization Projects

Material Sales

- INFN 100 electron bunches with 0.5 GeV energies
 - 2 cm sq / 50 μ m thick / 5 10 μ m CCD
- BNL beam position monitors
 - 4.5 mm sq / 50 μ m thick / single crystal

Packaged Detectors

beilgg

Diamond, Inc

- Industrial Partner
 - Neutrons at 14 MeV
- Argonne x-ray fluorescence microscope
 - (intensity indicator, normalization of signals collected from samples)
 - 10¹¹ photons/sec at 4.5 25 keV

Conclusions

beilag

Diamond, Inc

• Have a process for growing thin diamond films with predictable charge collection properties.

• Have an analytical method that can reliably predict product performance in customers' applications.

• Have a process for modifying thin diamond coupons to have uniform predictable thickness coupon-to-coupon.

• Have an in-house low volume custom packaging capability.

• Sales of diamond material and prototyping of packaged detectors with end-users have started.

Acknowledgements:

- 1. Harris Kagan, Ohio State University
- 2. Andreas Stolz, NSCL, Michigan State Univ.

Funded by:

DOE NP SBIR Grant No. DE-SC0007689 Manouchehr Farkhondeh, Program Manager

