GaAsSb/AlGaAsP Superlattice Polarized Electron Source

Contract # DE-SC0009516

Principal Investigator: Yiqiao Chen, SVT Associates, MN 55344

Collaborator: DoE Jefferson Lab

DoE SBIR/STTR Exchange Meeting Aug 6-7, 2015, Gaithersburg, Maryland

SVT Associates Company Overview

Founded in 1993 as Molecular Beam Epitaxy (MBE) equipment provider

- Originated from Perkin Elmer Physical Electronics MBE Group
- One of today's leading MBE suppliers by continual product development
- Over 160 MBE systems now in the field
- Strong UHV hardware, epitaxial growth, and thin film expertise
- Technology Driven Company
 - >30% employees are PhD scientists (currently 30 employees total)
 - Key engineers > 25 years experience in MBE and UHV technology
- Diverse system product line spanning Molecular Beam Epitaxy (MBE), Thin Film Deposition (i.e. ALD, PVD, PLD and Solar), and In-situ Thin Film Monitoring
- Only MBE Company with System, Components, Process, In-situ Monitoring Expertise with our own Applications Laboratory and Characterization Facility

SVT Facilities and Capabilities

•Material deposition systems: MBE PLD, ALD

Established know-how: 8 Applications Laboratory MBE systems producing world class epitaxial growth, feeding requirements back to equipment designers

•Complete semiconductor material characterization facility: HR-XRD, FTIR, Hall, Low-temp probe station, Semiconductor parameter analyzer, ellipsometer.

•Device Fabrication

Class-100 clean room, ICP dry etcher.

Dual Oxide - Nitride MBE

Engines for Thin Film Innovation

©2014 SVT Associates, Inc. All Rights Reserved

Semiconductors Research at SVT

- US government, industrial research grants, and internal programs
- Established research collaboration with many universities: Illinois, North Carolina State, Florida, Stanford ...
- Highly technically oriented, PhD scientists & engineers
- > 100 book chapters, publications and presentations
- Significant Antimonide, Nitride and ZnO accomplishments
 - High power HEMT & MOSHEMT
 - Commercialized solar blind UV detector products
 - High efficiency photocathode
 - Innovative LED utilizing Quantum Structures
 - New mid Infrared Laser and Photodiode
 - Rainbow colored MgZnCdO

Program Overview

Program title: GaAsSb/AlGaAsP Superlattice High-Polarization Electron Source

Ultimate goal: SVT-70% cw polarized electron sources with >80% polarization and >10 mA beam current Photocathode Modeling/Design JLab-30% JLab-30%

Present Applications:

DoE needs: high energy acceleratorsSpintronics

Potential Applications:

Surface analysisQuantum computingMagnetic imaging

Photocathode - General Properties

Basics of polarized electron photocathode

Semiconductor: suitable material for polarized photocathodes

Non-zero transition matrix elements for semiconductors under circular-polarized light illumination

Strained SL : highest polarization (HH-LH splitting further increased due to the quantum confinement by SL)

Initial polarization: $P_0 = (n_{\uparrow} - n_{\downarrow})/(n_{\uparrow} + n_{\downarrow})$

Why Sb-based SL?

Existing structures in literature

- 1. InGaAs/AIGaAs (strained well),70-80%, QE~0.7%
- 2. GaAs/GaAsP (strained well), 92%, measured, QE~1%
- 3. GaAs/AllnGaAs (strained barrier), 91%
- 4. AllnGaAs/GaAsP (strain-balanced), 84%
- 5. AllnGaAs/AlGaAs (strained well), 92% with QE~0.85% ~

GaAs/GaAs_{0.64}P_{0.36} SL:

Best overall performance thus far, HH-LH splitting δ ~92 meV

GaAs_{0.85}Sb_{0.15}/Al_{0.25}GaAsP_{0.15} SL:

highest VB offset ⇒ Highest HH-LH splitting: δ>150 meV resulting in highest initial polarization and larger tolerance to γ
Dislocation-free SL material since no strain relaxed layer required, boost QE
No need to grow very thick metamorphic buffer (5-10 µm), cost-effective

GaAsSb/AIGaAsP SL Photocathode – High Polarization and High QE

All HH-LH splittings<95meV

Very High VB offset in GaAsSb/AlGaAs Heterostructure

GaAsSb/AlGaAsP SL comprs.comprs.tensilecomprs.comprs.tensilecomprs.-GaAsP GaAsP strained strained strained strained strained strained strained GaAsSb AlGaAsP AlGaAsP GaAsSb GaAs GaAs GaAsSb CB -CB Е Е HH HH ∍ LH LH VB VB 0.0 2.0 P-valley CBO w. r. t. InSb VBM (eV) GaAs, Sb, s.o-- AISb GaAs_{0.08}Sb GaSb AIAs_{0.08}Sb_{0.92} AIAs AlAs_{0.08}Sb_{0.92} 1.5 VBO w. r. t. InSb VBM (eV) Al_{0.52} **OAISb** InAs -0.5 InAs_{0.91}Sb_{0.09} 1.0 Ga_{0.5} InSb_{0.31}P_{0.69} GaA GaSb GaAs_{0.06}Sb AI. 48ln_{0.52}A\$ GalnSb As Sb n\$b_{0.31}P_{0.69} GaAs 0.5 InP -1.0 Ga0.47 In0.53 As 0.0 AlAs T = 300 KInAs Al_{0.52}In_{0.48}P InAs____Sb -0.5 -1.5 5.8 5.8 6.0 6.2 5.6 6.0 6.2 5.6 Lattice constant (Å) Lattice constant (Å) SVT A

GaAs/GaAsP SL

Engines for Thin Film Innovation

©2014 SVT Associates, Inc. All Rights Reserved

GaAsSb/AlGaAsP SL: wider high P₀ range and larger tolerance to γ

Comparison of the initial polarization of photocathodes based on GaAs_{0.85}Sb_{0.15}/ Al_{0.25}Ga_{0.75}As_{0.85}P_{0.15} SL, GaAs/GaAs_{0.67}P_{0.33} SL and GaAs_{0.85}Sb_{0.15}/ Al_{0.4}Ga_{0.6}As on GaAs substrate. Line spreading width γ =10 meV is used for all three.

Broadening of band,
$$\gamma : \quad \delta(\omega_{nn'}(\vec{k}_{\parallel},k_z) - \omega) \rightarrow \frac{1}{\pi} \operatorname{Im} \frac{1}{\omega - \omega_{nn'}(\vec{k}_{\parallel},k_z) - i\gamma}$$

Cooled shutter for As/P/Sb material system

•As and P very volatile -> unwanted P into GaAsSb •Instant flux shut off of P by cooled shutter -> sharp SL interfaces

Photo of the output end of the independently cooled shroud/shutter assembly for phosphorus flux abatement. The shutter can change states in a sub-second time scale.

Key benefits of proposed approaches

- Improved polarization by large HH-LH splitting.
- Significantly improved material quality and thicker SL absorber region boosting QE by fully strain-compensated GaAsSb/AIGaAsP SL.
- An effective InAIP/InGaP DBR structure on a GaAs substrate to enhance QE through more efficient photon absorption.
- Cooled shutter approach to improve interface quality of GaAsSb/AlGaAsP SLs.

High-quality GaAsSb/AlGaAsP SL material achieved

Measured and simulated XRD rocking curves for a $GaAs_{0.85}Sb_{0.15}/Al_{0.25}Ga_{0.75}As_{0.85}P_{0.15}$ SL structure grown on GaAs.

Recent progress on GaAs/GaAsP photocathodes

- Novel thin (~50nm) GaP buffer instead of thick (~5000nm) graded GaAsP buffer.
- Fast relaxation of GaP on GaAs.
- Direct growth of GaAsP on GaP; no graded GaAsP required.
- Structurally high quality GaAs/GaAsP SL achieved.

High-resolution X-ray diffraction curve for GaAs/GaAsP SL grown on GaP/GaAs.

AFM picture for GaAs/GaAsP SL grown on GaP/GaAs

Engines for Thin Film Innovation

©2014 SVT Associates, Inc. All Rights Reserved

Summary

Progress

- SL structure design and DBR design completed
- Equipment upgrade completed (P pumping system, dedicated MBE P/Sb system)
- MBE growth of GaAsSb/AlGaAsP SL performed, encouraging initial material result
- Delay due to cryo-shroud leakage; leakage fixed and maintenance completed.

Next step

- Optimization of MBE growth of GaAsSb/AlGaAsP SLs
- MBE growth and optical testing of DBRs
- MBE growth of GaAsSb/AIGaAsP SL photocathodes
- Device fabrication and testing (JLab)

