Development of a Superconducting RF Harmonic Cavity for eRHIC

Chase H. Boulware, Terry L. Grimm, Sergey Arsenyev, Adam Rogacki Niowave, Inc. Lansing MI

NP SBIR/STTR Exchange Meeting, Gaithersburg MD August 2015

Commercial Uses of Superconducting Electron Linacs

High Power X-Ray Sources

Radioisotope Production

Free Electron Lasers

2

Turnkey Linac Subsystems

RF electron guns

High-power couplers

Solid-state and tetrode RF amplifiers (up to 60 kW)

Superconducting cavities and cryomodules

Commercial 4 K refrigerators (rugged piston-based systems, 100 W cryogenic capacity)

Project Overview

- Harmonic linearizing cavity for eRHIC
 - benefits of long pulse operation
 - need for high-current linearizing section
- Superconducting photonic-bandgap (PBG) cavity design
 - PBG cell design
 - multi-cell cavity
- Cavity prototype fabrication
 - niobium forming
 - RF measurements and tuning
- Cavity prototype testing

Project Team

Chase Boulware, Terry Grimm, Adam Rogacki, other Design and Engineering Staff

Evgenya Simakov

Sergey Belomestnykh (consultation on eRHIC plans)

Sergey Arsenyev (currently at Niowave)

eRHIC

eRHIC Beam Parameters

accelerating cavities RF frequency	413 MHz		
5 th harmonic frequency	2064 MHz		
beam current	50 mA per pass		
bunch charge and repetition rate	5 nC @ 9.38 MHz		
electron beam energy (upgraded in stages)	5 GeV	20 GeV	30 GeV
bunch length (rms)	4 mm	2 mm	2 mm

- intense electron bunches lead to complex beam dynamics and drive unwanted higher-order modes
- longer bunches
 - reduced bunch intensity (good)
 - induced energy spread from main linac waveform depolarizes electron bunch (bad)

Harmonic SRF Linac

- combination of acceleration from main linac and properly phased harmonic cavity
- example: DESY (XFEL) pursued this approach at the 3rd harmonic
 - frequency of 3.9 GHz (3 × 1.3 GHz)
 - SRF, but not operated
 CW

Photonic-bandgap Accelerators

- geometric array of conductive rods has a bandgap
- removing a single rod creates a frequency specific resonator

 HOM

Single-cell PBGs

NIOWAVE

elliptical inner rods

- Niowave and LANL collaborated on several single-cell PBG cavities
- demonstrated up to 18 MV/m in cryotests at LANL.

Multi-cell PBG cavity

- Higher gradients in multi-cell cavities
- 5-cell design uses one PBG center cell
 - PBG for both accelerating power coupling and HOM damping
 - replaces end assemblies

Tuning of Multi-cell cavity with PBG

PBG cell has higher peak fields than elliptical cell, so this cavity has special tuning.

- Design predates SBIR
- Implementation for Nb and RF measurements part of SBIR

Electric field magnitude along central axis

Magnetic field magnitude on niobium surfaces (peaks equal in each cell)

Cavity Mechanical Design

The SBIR kicked off with plans for manufacturing the 5-cell cavity design

- new forming steps for waveguide-cavity interface
- new rectangular vacuum seals designed based on aluminum diamond seals (TESLA design)

Cavity Fabrication [1]

Evgenya Simakov's Early Career project funded a copper prototype (project started a few months before Phase II SBIR). Many steps were prototyped.

Cavity Fabrication [2]

The SBIR project proceeded with niobium-specific issues

- electron-beam welding design and fixturing
- new rectangular vacuum seals and flanges designed based on aluminum diamond seals (TESLA design)

Cavity Fabrication [3]

Niobium cavity after electron-beam welding. Pre-tuning met goals for frequency and flatness.

Cavity Processing

Complete cavity underwent bulk etching and high-pressure rinse at Niowave.

Cryotest at LANL

Accelerating mode showed anomalous low-field Q (10⁶ instead of 10⁸).

Other passband mode showed high Q and surface fields up to 18 MV/m were generated.

An initial cryotest of the structure has been performed, funded by Evgenya Simakov through her Early Career Project.

Mechanical Joint

Joint Losses Measurement with Trapped Mode

Next Test at Niowave

Mechanical design for next test setup is now proceeding with design of a specialized titanium He vessel to replace the generic version in this cartoon.

Phase II SBIR Summary

- Mechanical design of cavity complete
- Cavity Manufacturing and Tuning complete
- Cavity Processing complete
- Vertical Test Design *in progress*
- Vertical Test of Cavity first test at LANL!

next test being planned at Niowave

Conceptual Cryomodule Design – in progress