Isotope Production Using a Superconducting Electron Linac

Terry L. Grimm, Jerry L. Hollister, Stephen A. Klass, Erik S. Maddock, Mark P. Sinila, Valeriia N. Starovoitova *Niowave, Inc. Lansing MI*

DOE-NP SBIR/STTR Exchange Meeting, Gaithersburg MD August 2014

Outline

- Key personnel
- Superconducting electron linacs & their applications
- Photonuclear isotope production
 - Research isotopes (DOE Isotope Program)
 - Mo-99 (commercial market)
- Mo-99 production rates
- Mo-99 recovery
- NRC & state licenses
- Niowave headquarters prototype & commission
- Niowave airport facility production & distribution

Key Personnel

Dr. Terry Grimm

President & Senior Scientist

- PhD Nuclear Engineering, MIT
- Founded Niowave in 2005
- Over 25 years experience in superconducting accelerators

Jerry Hollister Chief Operating Officer

- BS Engineering, Univ of Michigan
- Former Naval Officer & Warranted Contracting Officer

Dr. Valeriia Starovoitova

Nuclear Physicist

- PhD Nuclear Physics, Purdue
- Researcher at Idaho Accelerator Center
- Over 10 years experience in nuclear physics

Mark Sinila Chief Financial Officer

- BS Business Admin, Albion
- Over 20 years experience in business administration

Erik Maddock Nuclear Engineer

- MS Radiological Physics, Wayne State
- Niowave Radiation Safety Officer
- US Navy Nuclear Power School

Steve Klass Director of Manufacturing

- BS Engineering, Saginaw Valley
- Over 20 years experience in manufacturing at General Motors

Why Superconducting?

- 10⁶ lower surface resistance than copper
 - Most RF power goes to electron beam
 - CW/continuous operation at relatively high accelerating gradients >10 MV/m
- Large aperture resonant cavities
 - Improved wake-fields and higher order mode spectrum
 - Preserve high brightness beam at high average current (high power)

Commercial Uses of Superconducting Electron Linacs

High Power X-Ray Sources

Radioisotope Production

High Flux Neutron Sources

Free Electron Lasers

Superconducting Turnkey Electron Linacs

Turn-key Systems

- Superconducting Linac
- Helium Cryoplant
- Microwave Power
- Licensing

Electron Beam Energy	0.5 – 40 MeV
Electron Beam Power	$1 \mathrm{W} - 100 \mathrm{kW}$
Electron Bunch Length	~5 ps

Turnkey Linac Subsystems

RF electron guns

High-power couplers

Solid-state and tetrode RF amplifiers (up to 60 kW)

Superconducting cavities and cryomodules

Commercial 4 K refrigerators (rugged piston-based systems, 100 W cryogenic capacity)

Superconducting Accelerating Cavities

Variety of new SRF cavity shapes are allowing compact, low-frequency acceleration with high average beam power.

- For commercial electron linacs the minimum costs for a system occur around:
 - 300-350 MHz (multi-spoke structures)
 - 4.5 K (>1 atmosphere liquid helium)

- Advantages for low frequency, high current linacs
 - Mechanical stability (stable against microphonics)
 - Compact geometry for improved real-estate gradient and lowfrequency operation at 4 K
 - Improved higher-order-mode (HOM) spectrum and damping

RF Power Sources

11

- Solid-state supplies to 5 kW
- Tetrode amplifer to 60 kW
- IOTs to 90 kW
- Klystrons to >1 MW

inductive output tube

Commercial 4 K Refrigerators

- Cryo-cooler to 5 W
 - 4.5 K operation
 - 5 kW electrical power
- Commercial refrigerator to 110 W
 - 4.5 K operation (slightly above 1 atm)
 - total electrical power 100 kW
 - higher capacity units available

5 W cryocooler

2 & 10 MeV Injectors

	a second s			
	test beam dump	Parameter	2 MeV	10 MeV
		cathode type	thermionic	thermionic
	SRF booster cavity	NCRF electron gun energy	100 keV	100 keV
		SRF booster cavity energy	2 MeV	10 MeV
low-energy electron transport beamline	bunch repetition rate (gun, booster frequency)	350 MHz	350 MHz	
		transverse normalized rms emittance	3-5 mm mrad	3-5 mm mrad
		bunch length @ 2 MeV	2-5 ps	2-5 ps
normal-conduction in the second secon	cting e RF gun	average beam current	2 mA	1-2 mA

Liquid Metal Converters[1]

Bremsstrahlung Converter:

- High conversion efficiency (high Z)
- High melting point, if the converter is solid
- Low melting point and good thermomechanical properties (e.g., swelling, ductility loss, creep rates, etc.), if the converter is liquid
- Optimum thickness depends on electron energy and material

Lead-Bismuth Eutectic (LBE)

- Low melting point: 124°C
- High boiling point: 1670°C
- Z=82,83

40 MeV, 1 kW test (2013)

- Photonuclear production of medical, industrial, and research isotopes for DOE Isotope Program
 - (γ, n)
 - $-(\gamma, p)$
 - (n, γ)
- Mo-99 production from LEU domestic facilities which do not rely on using highly enriched uranium
 - $-(\gamma, fission)$
 - (n, fission)

Photo-production of Isotopes

- Cu-67 measured activity:
 16.0±0.4 μCi/(g·kW·h)
- Predicted activity:
 20 μCi/(g·kW·h)

Scaled up activity: 0.2 Ci/g (using Zn-68, 100 kW beam and 24 h irradiation)

Summary of Isotopes

	Target	Reaction	Half-life	Applications
Photo- absorption	⁶⁸ Zn	68 Zn(γ ,p) 67 Cu	61 hours	Therapeutic beta and gamma emitter
	²²⁵ Ac	226 Ra(γ ,n) 226 Ra \rightarrow^{225} Ac	10 days	Radioimmunotherapy alpha emitter for a number of cancers
	⁸⁹ Y	⁸⁹ Y(γ,n) ⁸⁸ Y	106 days	Tracer isotope in industry
	⁴⁸ Ti	⁴⁸ Ti (γ,p) ⁴⁷ Sc	3.4 days	Therapeutic/imaging applications
Neutron Capture	³¹ P	$^{31}P(n,\gamma)^{32}P$	14.3 days	High energy beta-emitter for research
	⁴⁵ Sc	45 Sc(n, γ) 46 Sc	84 days	Tracer isotope in research and industry
	⁵⁵ Mn	55 Mn(n, γ) 56 Mn	2.6 hours	Tracer isotope for research
	⁷⁴ Se	74 Se(n, γ) 75 Se	119 days	Source for NDT
	⁸⁹ Y	${}^{89}Y(n,\gamma){}^{90}Y$	2.7 days	Tracer, beta-emitter for therapy
	¹⁶⁵ Ho	¹⁶⁵ Ho(n,γ) ¹⁶⁶ Ho	26.8 hours	Therapeutic applications
	¹⁷⁶ Lu	176 Lu(n, γ) 177 Lu	6.6 days	Therapeutic applications
	¹⁹¹ Ir	191 Ir(n, γ) 192 Ir	74 days	Brachytherapy material; tracer isotope in industry
	¹⁹⁷ Au	$^{197}Au(n,\gamma)^{198}Au$	2.7 days	Gamma emitter used for various cancer treatment; tracer isotope in research

Electrons are accelerated

Electrons brake and produce photons

Photons:

- a) Induce photon-fission
- b) Liberate neutrons via fission and (γ,n) reactions and result in neutroninduced fission

- Using LEU we plan to produce ~9 kCi of Mo-99 (~1,500 six-day curies) weekly at each of the 40 MeV 100 kW facilities
- 4-5 such facilities will satisfy North America's demand of Mo-99

- Metal uranium production targets
- Molybdenum recovery
 - Uranium target dissolution with HNO₃
 - Molybdenum adsorption on ion exchange resin
- Standard Tc-99m generators
 - Capable of using the existing supply chain
- Waste consolidated and shipped to LLW/HLW repositories

- State of Michigan
 - Licensed to operate 40 MeV, 100 kW linacs
 - License number PR-2013-0346
- Nuclear Regulatory Commission
 - Source Material License
 - Licensed to possess, machine, and distribute DU, ^{nat}U, ²³²Th
 - License number 21-35145-01
 - Isotope Production Licenses
 - Research isotopes submitted and under review
 - Mo-99 submission pending additional assessment and discussion

- Plan to scale up production and processing as technical and financial milestones are met
- Phased approach to production and processing

- Phase I Feasibility Demo
 - Produce up to 900 Ci/wk (150 6-day Ci/wk)
 - Inventory of <1,750 g of 20% LEU (<350 g U235)
 - Part 150 Less than critical mass
 - Batch process <10 g of 20% LEU (<2 g U235)
 - Part 30 Byproduct from accelerators

- Phase II Full Scale Demo
 - Produce up to 9,000 Ci/wk (1,500 6-day Ci/wk)
 - Inventory of <50,000 g of 20% LEU (<10,000 g U235)
 - Part 70 Cat 3 SNM of low strategic significance
 - Batch process <100 g of 20% LEU (<20 g U235)
 - Part 30 Byproduct from accelerators
 - Extract additional isotopes of commercial value
 - I131, Xe133, etc.

- Phase III Full Production
 - Produce up to 36,000 Ci/wk (6,000 6-day Ci/wk)
 - 4 to 5 Production Facilities
 - Distributed around the U.S. to expedite distribution
 - Independently licensed under the same terms as the full scale demo
 - Distribute additional isotopes of commercial value
 - I131, Xe133, etc.

- Prototype and commission
 - 40 MeV superconducting electron linac
 - Isotope production target
- 2012 Dedication of testing facility
 - Keynote speakers: Senator Carl Levin, Senator Debbie Stabenow, Rear Admiral Matthew Klunder and MSU Provost Kim Wilcox

Niowave Headquarters [2]

• Total 60,000 SF

- Full in-house design, manufacturing, processing and testing capability
- 3+ megawatts power
- 60 kW RF power systems
- Two 100 W helium refrigerators
- Licensed to operate up to 40
 MeV and 100 kW

A superconducting linac being installed in a Niowave testing tunnel

Interior of Niowave testing facility

Niowave Airport Facility

• New manufacturing facility under construction

- Beneficial
 occupancy in
 Nov 2014
- Production & distribution of isotopes
 - 24/7 operation
- Additional expansion space available

- Niowave's photonuclear isotope facilities will be capable of supplying the entire Mo-99 requirements of North America
- First Mo-99 production (small scale)
 Planned for Dec 2014
- Research isotopes supplied to DOE Isotope Program
 Planned for Dec 2014