Defect-free Ultra-Rapid Polishing/Thinning of Diamond Crystal Radiator Targets for Highly Linearly Polarized Photon Beams

> PI: Arul Arjunan Sinmat Inc

Rajiv Singh University of Florida

UF FLORIDA

Richard Jones University of Connecticut Program Manager: Manouchehr Farkhondeh

DOE STTR #DE-SC-0004190

Outline

• Application: high-energy polarized photon source

- □ uniqueness of diamond as a radiator
- □ competing specifications: thickness vs. flatness
- $\hfill\square$ proposed solution: a thick frame around the radiator

• Two approaches investigated

- vapor phase ion etching with mask (Sinmat)
 milling by UV laser ablation (UConn)
- Conclusions and Future Directions

Sinmat

Diamond - a high-energy polarized photon source

Crystalline radiator => electrons "bremsstrahlung" from entire planes of atoms at a time

- 1. discrete peaks in energy spectrum
- 2. photons are polarized within the peaks

Diamond is the unique choice for crystal radiator

- 1. low atomic number
- 2. dense atomic packing
- 3. high thermal conductivity
- 4. radiation hard, mechanically robust, large-area monocrystals, ...

SBIR / STTR Exchange Meeting, Gaithersburg, August 6-7, 2014

Sinmat

Innovative CMP solutions

Coherent bremsstrahlung beam properties

J881

crystal radiator

Diamond radiator requirements

- 1. thickness 10⁻⁴ radiation lengths ~ 20 microns
- 2. "mosaic spread" of the crystal planes ~ 20 μ rad RMS

- □ Actually includes other kinds of effects
 - distributed strain
 - plastic deformation
- □ Measured directly by X-ray diffraction: "rocking curves"

E6 single-crystal CVD(!) diamond

X-ray measurements performed at Cornell High Energy Synchrotron Source (CHESS)

SBIR / STTR Exchange Meeting, Gaithersburg, August 6-7, 2014

5

Sinmat

Innovative CMP solutions

E6 CVD diamond thinned to 15 microns

Sample was thinned using proprietary Sinmat RCMP process (presented in early talk)

- very fragile -- notice the corner broken off
- rocking curve shows very large bending deformation

X-ray measurements performed at Cornell High Energy Synchrotron Source (CHESS) - STTR phase 1

Understand and overcome the thin diamond warping problem.

Diamonds appear to warp severely when thinned to 20 microns.

Warping is from combination of mounting and internal stresses.

Try to stiffen the diamond by leaving a thick outer frame around the 20 micron region.

Frame around 20 micron window is still part of the single crystal, acts like a drum head.

Two-prong method of attack

1. Chemical etching using a mask - Sinmat

- Step 1: Deposit a metallic mask covering the outer frame region.
- Step 2: Etch masked sample using oxygen VPIE.
 - Monitor removal rates, expect >50 microns/hr
 - Watch when mask sputters away, when gone return to step 1.
- Step 3: Measure central thickness, remove residual mask when done.

2. Precision milling with a UV laser - UConn

- New ablation facility built at UConn for this project
 - 5W pulsed excimer laser generates 5W at 193 nm
 - UV optics to expand beam, focus to 0.1mm spot
 - evacuated ablation chamber with tilted sample holder
 - 3D motion controls to raster the diamond across the beam
- Software developed to generate smooth flat ablated surface

8

APPROACH 1: Chemical etching

- Slight misalignment shows 4 masks were needed.
- Frame thickness is 185 microns
- Central region is 55 microns thick
- Etched surface shows significant roughness, pits 10 microns deep

Careful monitoring needed to prevent burn-through below 50 µm

Vapor Phase Etch Process

Vapor Phase Etch Process

- Etch rate continuously reduced with progressive etching
- Al mask re-sputtered on the sample

APPROACH 2: Laser ablation

- 200 microns removed in 8hr
- surface roughness < 1 μm
- risk of burn-through below 50 µm thickness

Uniform sample S90

Uniform sample S30

Sinmat Innovative CMP solutions

X-ray assessment: S90

X-ray assessment: S30

X-ray diffraction: S200_50

X-ray diffraction: UC300_40

Next steps: large-area 7x7 mm²

Summary of Methods

parameters → method	20 μm thickness	cut rate	multiple sample	quality
Reactive CMP	\checkmark	\checkmark	\checkmark	X
Vapor Phase Etch process				X
Laser ablation		X	X	\checkmark

Plan: combine the 2 approaches

SBIR / STTR Exchange Meeting, Gaithersburg, August 6-7, 2014

Sinmat

Innovative CMP solutions

Summary

Developed a three-step process to thin diamond samples

- Step 1: <u>Vapor phase etching process</u> (75 micron/hr)
- Step 2: Polish surface defects with <u>RCMP process</u>
- Step 3: Cut thin central window using laser ablation

Validated results of all proposed steps using X-ray diffraction

- Designed a custom diamond diffraction setup at CHESS
- Optimized procedures to obtain 3 rocking curves per hour
- Developed analysis code to assess X-ray diffraction topograph
- Developed custom analysis code for 2-surface profilometry

Expected by Phase 2 completion

- 3 production-quality crystals 7x7 mm² with 20 micron window
- draft publication for NP instrumentation journal

Acknowledgements

•UConn students

- o Brendan Pratt (grad)
- o Igor Senderovich (grad)
- o Fridah Mokaya (grad)
- o Alex Barnes (grad)
- o Liana Hotte (undergrad)
- •University of Florida students
 - o Jinhyung Lee (grad)
 - o Jong Cheol Kim (grad)
 - o Minfei Xue (grad)
- •Nathan Sparks Catholic University
- •Ken Finkelstein CHESS staff and collaborator

This work was supported by the United States Department of Energy through STTR award number DE-SC0004190, and by the National Science Foundation through grant number 1207857.