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About InnoSense LLC  

■ Established in 2002 by private investment, housed in a recently expanded 9,000 square feet 
laboratory facility located in Torrance, California.  

■ Key laboratories include five “wet” chemical facilities equipped with fume hoods, a clean 
room, a spectroscopy facility, optics and testing laboratory, and two machine shops. 

■ 18 employees, including 4 PhD, 4 MS and 2 MBA degree holders. 
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Team at InnoSense LLC 

David Hess, PhD, Senior Scientist, R&D 
  Polymer chemistry 
  Supercritical CO2-asssited processing of nanostructures 
  Materials development and characterization 

Uma Sampathkumaran, PhD, Vice President, R&D 
 Development of ORMOSILs and aerogel structures 
 Processing refractory, magnetic and dielectric ceramics 
 Materials characterization 

Raymond Winter, MS, Senior Engineer 
  Ceramics processing and sintering 
  Statistical design of experiments 
  Materials characterization 

Mohammad Mushfiq, BSEE, Research Engineer 
  Materials processing and characterization 
  Supercritical drying of aerogels 

John Abolencia, BS, Research Engineer 
  Materials processing and characterization 
  Tape casting 



    Slide 5 
   
   

Refractory Hot Catchers for Rare Isotopes 

Primary purpose of porous oxide monolith is to catch 9C−22C isotopes and 
convert them to 9C16O− 22C16O expected to be released almost as a noble gas. 
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Catchers Under Investigation 

Refractory Catcher Projectile Expected Isotope 

Tungsten-coated SiO2 
Aerogel 

18O (typical) 
8-11Li 
6,8He  

Carbon Aerogel 16O, 48Ca, etc. 
12C14O–12C24O 
12C14O2–12C24O2 

Yttria-Stabilized 
Zirconia /Other Porous 
Oxide Monoliths 

12C, 48Ca, etc. 
9C16O–22C16O 
9C16O2–22C16O2 
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Background on ISOL Target Materials 

Isotope Separation On-Line (ISOL) used to generate 
radionuclides 
 Targets are used with high power beams 
 Isotopes are produced by reactions of the beam with 

target material 
 Target must be dense enough to stop energetic 

beam, yet porous enough to allow rapid diffusion of 
radionuclides to the accelerator source 
 Must be thermally conductive to withstand beam 

power  
 Targets are heated to > 2000 °C to increase diffusion 

rates of radioactive nuclides 
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Benefits When Used in Catcher Mode 

■ Catchers used to stop high energy radioactive isotopes created in a 
separate production target up stream 

■ In the catcher mode, thermal conductivity is less relevant since the 
beam power is deposited in the thermally separated production target 
irradiated with heavy ion beams 

■ No radiation damage when used in catcher mode since only secondary 
radioisotope beams impinge on it 

■ Selection of materials is open to new approaches that cannot work with 
ISOL targets, e.g. aerogels with low thermal conductivity 

■ The porous refractory materials will theoretically offer more stopping 
power and fast-release for the generation of intense rare isotopes 

■ The refractory nature potentially allows them to be used as: 
■ Compact isotope catcher/ion source placed in the first focal plane of 

the fragment separator with the capability of selective harvesting 
isotopes for different applications 
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 Technical Objectives and Milestones 

1. Refine formulations and processing conditions to reproducibly fabricate porous, 
solid catchers (carbon aerogels, porous oxide monoliths). 

2. Evaluate the physical properties of the porous monoliths after low temperature 
processing 

3. Screen stability and open pore structure of refractory porous materials at isotope 
production temperatures (1000 to 2000 °C) for beamline studies. 

4. Evaluate prescreened refractory porous materials off-line and on-line for 
suitability as reactive diffusion targets for molecular species of CO. 

Objectives 

Milestones 
 Fabricate refractory porous samples with moderate densities (1 g/cm3) that retain 

their open nanoscale porosity upon heating. 
 Refractory carbon aerogels and porous oxides maintain structural and 

dimensional stability after heating to temperatures ranging from 1000–1500 °C. 
 Off-line release characteristics are studied using RGA and stable beams. 
 On-line measurement of the release times of radioactive CO and CO2 for the most 

promising samples completed. 
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Supercritical CO2 Drying of Polymer Aerogels 

 Supercritical CO2 
extraction of the 
solvent in pores 
enables aerogel 
fabrication without pore 
collapse 

 Highly porous, low 
density, polymer 
aerogel monoliths with 
minimal reduction in 
dimensions. 

The SCCO2 drier Polymer aerogel in drier 

Apparent Densities 
~ 0.08–0.27 g/cm3  
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Pyrolysis of Polymer Aerogel to Carbon Aerogel 

     
     
  

    
  

    
    

    
     

Muffle furnace Retort in furnace SCCO2 dried 
polymer aerogel 

Carbon aerogel 

Before pyrolysis After pyrolysis 

30% reduction in monolith 
dimension after pyrolysis 

Dye penetration viewed 
with UV light 

Top Bottom 

Apparent Density ~ 
0.07–0.35 g/cm3  
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SEM of Undoped Carbon Aerogels 

Supercritical CO2 dried 
polymer aerogels 

Polymer aerogel pyrolyzed to 
form carbon aerogel 

Pore size ~60–300 nm  Pore size ~60–180 nm  
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W-Doped Polymer Aerogels 

W-doped polymer 
aerogels after 
SCCO2 drying 

SEM of SCCO2 dried aerogel SEM of carbon aerogel 

Pore size  
~0.3–3 µm 

Apparent Density  
~0.36–0.40 g/cm3 

 
~0.39–0.41 g/cm3 
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Samples Mechanically Stable After Vacuum 
Heat Treatment at 1500 °C 

Vacuum induction furnace  C-aerogels before (left) and after (right) vacuum heating  

 Samples vacuum heated at 1500 °C for 2 hour at Refrac, Chandler, AZ 
 Minimum-to-no out gassing was observed indicative of fully pyrolyzed 

samples 
 Monolithic samples remained mechanically intact 
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SEM Images of Undoped Carbon Aerogels After 
Vacuum Heat Treatment at 1500 °C 

Different starting formulations to 
tune pore size and density 

Apparent Density ~0.09–0.36 g/cm3  

Pore Size ~15–120 nm 
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SEM Images of W-Doped Carbon Aerogels After 
Vacuum Heat Treatment at 1500 °C 

 Retains open porosity 
 Low doping level increases 

density significantly  

Top Bottom 

Apparent Density ~ 0.41–0.51 g/cm3  

Pore size  ~60 nm–1.2 µm 
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Tape Casting Process to Fabricate Porous 
Oxides 

Slip in Ball Mill 

Wet Cast Tape 

Pressed Green Disk 

Carver Hydraulic Press 

Dry Cast Tape 

½” Die Punch 
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Tape Cast Porous Oxide Monoliths 

Diced Stacked Hot Pressed Tape Disks after 800 °C Firing 

Disks After 1500 °C Firing Dye Penetrant Test 

Top Bottom 

Apparent Density 
~ 2.7–4.5 g/cm3 

 
Open porosity 
~15–49%  
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Grain Growth Inhibition Demonstrated  

Imaged at x1k and x50k 

HfO2 after 24 h@1500 °C  HfO2 + acicular porogen HfO2 + porogen + GGI 

Needle like pores Grain boundary phase 
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Summary of Material Properties  

Material Processing Density 
(g/cm3) 

Pores 
Sizes 

Through 
Porosity 

(Y/N) 
Undoped polymer aerogel SCCO2 dried 0.08–0.27 60–300 nm Yes 
Undoped carbon aerogel 800 °C/4 h in N2 0.07–0.35 60–180 nm Yes 
Undoped carbon aerogel 1500 °C/2 h 0.09–0.36 15–120 nm Yes 
W-doped polymer aerogel SCCO2 dried 0.36–0.40 0.3–3 µm Yes 
W-doped carbon aerogel 800 °C/4 h in N2 0.39–0.41 0.3–3 µm Yes 
W-doped carbon aerogel 1500 °C/2 h 0.41–0.51 0.1–1.2 µm Yes 
Hafnia 1500 °C/7 day 4.34 1–30 µm Yes (15%) 
Hafnia + acicular porogen 1500 °C/7 day 

 
2.76 7W x 30L Yes (49%) 

Hafnia + acicular 
porogen+ grain growth 
inhibitor 

1500 °C/7 day 4.79 5–7W 
x 30–40L 

Yes (49%) 
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Catcher Thickness Considerations 

 Desired area density (η ) for efficient isotope capture is ~ 3 g/cm2 or more 

 Area density can be related to the volumetric apparent density (ρ) 
measured by: 
 η =ρL  

 This value are used to screen catcher disks after the 1500 °C vacuum heat 
treatment 

Catcher 

 W-doped carbon aerogels are @50% of targeted density 
 Tape cast porous oxides are ~3-4x the targeted density with 50% open 

porosity 
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Simulation of CO Release from Alumina 

 HSC Chemistry Software for simulations 
 CO release can take place at 700 °C. 
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Simulation of CO Release from Yttria 

CO release takes place at ~800 °C. 
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New RGA Method for Release Efficiency 
Under Development at Argonne 
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Irradiation Beamline at NSCL 

The beam exits through the thin 
window shown in this view.  Beam 
intensity and profile detectors are in 
the beam line before the thin window. 

The thin window is at the right side of 
this view.  At the left is a scintillating 
screen to view the beam spot. The 
space between these is available for the 
stopper/heater/ion source and decay 
detector for release time measurements. 
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Summary 

• Density of W-doped carbon aerogels ~0.42–0.51 g/cm3 @1500 °C 
• Density of undoped carbon aerogels ~0.22–0.36 g/cm3 @1500 °C 
• Carbon aerogel disks intact when heated to 1500 °C 
• Carbon aerogels retain through porosity confirmed by dye test 

• 15–120 nm pores (undoped); 0.1–1.2 μm pores (W-doped) 
• Density of tape cast oxide monoliths ~2.76 g/cm3 (1500 °C/7 days) 

• 50% Hg intrusion porosity 
• Needle like pores ~30 nm wide –54 μm long 

• Grain growth inhibition is demonstrated for Hafnia 
• New RGA method for release characteristics of stable isotopes is 

being developed, trace 13C implanted in Al2O3 

• New heater design completed for in-beam studies 
• In-beam tests pending for all catcher materials at FRIB 
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