GaAsSb/AlGaAs Superlattice High-Polarization Electron Source

Contract # DE-SC0007501

Principal Investigator: Yiqiao Chen, SVT Associates, MN 55344

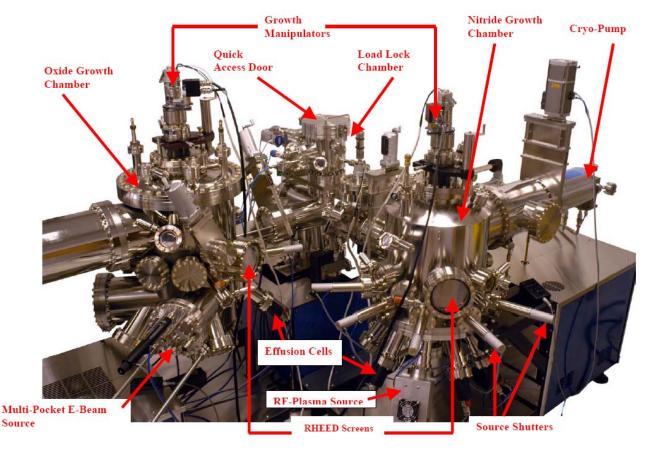
Subcontractor: DoE Jefferson Lab (Matt Poelker)

DoE SBIR/STTR Exchange Meeting Aug 6-7, 2014, Washington D.C.

SVT Associates Company Overview

Founded in 1993 as Molecular Beam Epitaxy (MBE) equipment provider

- Originated from Perkin Elmer Physical Electronics MBE Group
- One of today's leading MBE suppliers by continual product development
- Over 160 MBE systems now in the field (Over 25 MBE Systems in Asia)
- Strong UHV hardware, epitaxial growth, and thin film expertise
- Technology Driven Company
 - >30% employees are PhD scientists (currently 35 employees total)
 - Key engineers > 25 years experience in MBE and UHV technology
- Diverse system product line spanning Molecular Beam Epitaxy (MBE),
 Thin Film Deposition (i.e. ALD, PVD, PLD and Solar), and In-situ Thin
 Film Monitoring
- Only MBE Company with System, Components, Process, In-situ Monitoring Expertise with our own Applications Laboratory and Characterization Facility


SVT Facilities and Capabilities

Material deposition systems: MBE PLD, ALD

Established know-how: 8 Applications Laboratory MBE systems producing world class epitaxial growth, feeding requirements back to equipment designers

- •Complete semiconductor material characterization facility: HR-XRD, FTIR, Hall, Low-temp probe station, Semiconductor parameter analyzer, ellipsometer.
- •Device Fabrication

 Class-100 clean room, ICP dry etcher.

Dual Oxide - Nitride MBE

Semiconductors Research at SVT

- US government, industrial research grants, and internal programs
- Established research collaboration with many universities: Illinois, North Carolina State, Florida, Stanford ...
- Highly technically oriented, PhD scientists & engineers
- > 100 book chapters, publications and presentations
- Significant Antimonide, Nitride and ZnO accomplishments
 - High power HEMT & MOSHEMT
 - Commercialized solar blind UV detector products
 - High efficiency photocathode
 - Innovative LED utilizing Quantum Structures
 - New mid Infrared Laser and Photodiode
 - Rainbow colored MgZnCdO

Program Overview

Program title: GaAsSb/AlGaAs Superlattice High-Polarization Electron Source

Ultimate goal:

cw polarized electron sources with >80% polarization and >10 mA beam current

SVT-70%

- Photocathode Modeling/Design
- · Material Growth

JLab-30%

Photocathode Testing

Present Applications:

- •DoE needs: high energy accelerators
- Spintronics

Potential Applications:

- Surface analysis
- Quantum computing
- Magnetic imaging

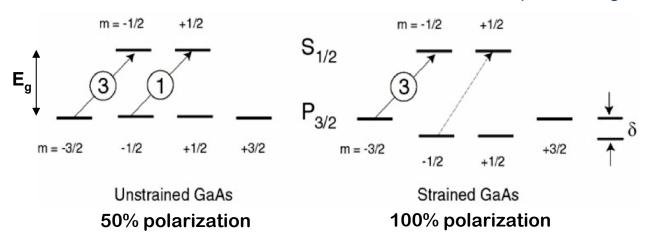
Photocathode - General Properties

- 1. Optical absorption
- 2. Electron transport to surface
- 3. Escape from surface to vacuum

Two aspects of emitted electrons in polarized photocathode: density and spins

Photons → free electrons in vacuum

Improvement:


- 1. increase QE
- 2. increase polarization

Basics of polarized electron photocathode

Semiconductor: suitable material for polarized photocathodes

Non-zero transition matrix elements for semiconductors under circular-polarized light illumination

Strained SL: highest polarization (HH-LH splitting further increased due to the quantum confinement by SL)

Initial polarization:
$$P_0 = (n_{\uparrow} - n_{\downarrow})/(n_{\uparrow} + n_{\downarrow})$$

Why GaAsSb/AlGaAs SL?

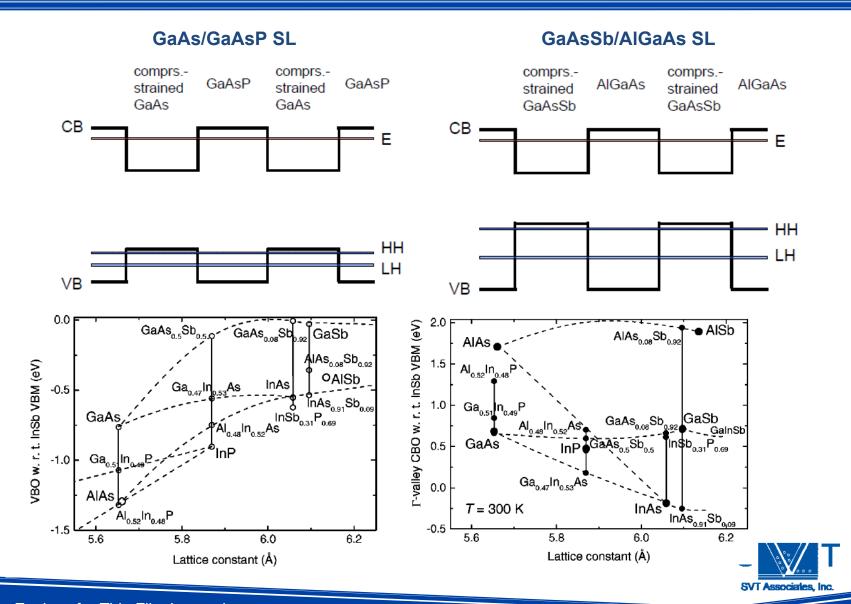
Existing structures in literature

- 1. InGaAs/AlGaAs (strained well),70-80%, QE~0.7%
- 2. GaAs/GaAsP (strained well), 92%, measured, QE~1%
- 3. GaAs/AllnGaAs (strained barrier), 91%
- 4. AllnGaAs/GaAsP (strain-balanced), 84%
- 5. AllnGaAs/AlGaAs (strained well), 92% with QE~0.85% >

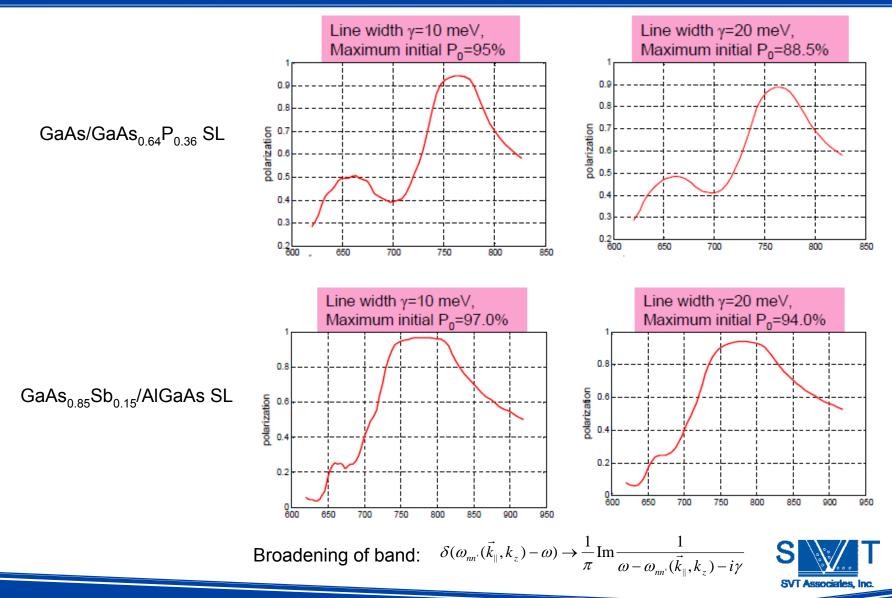
All HH-LH splittings<95meV

$GaAs/GaAs_{0.64}P_{0.36}$ SL:

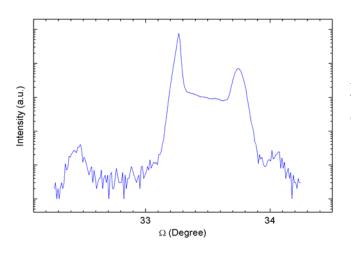
Best overall performance thus far, HH-LH splitting δ~92 meV


$GaAs_{0.85}Sb_{0.15}/Al_{0.4}Ga_{0.6}As SL$:

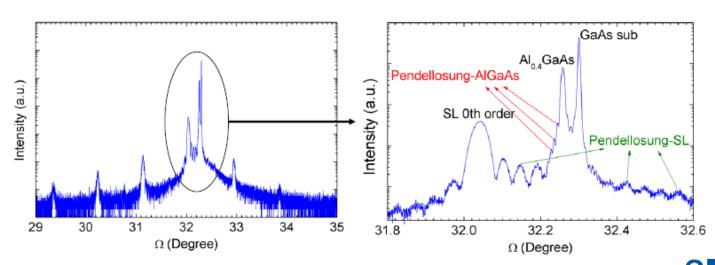
- •highest VB offset \implies Highest HH-LH splitting: δ ~168 meV resulting in highest initial polarization and larger tolerance to γ
- •Dislocation-free SL material since no strain relaxed layer required, boost QE
- •No need to grow very thick metamorphic buffer (5-10 µm), cost-effective


GaAsSb/AlGaAs SL Photocathode – High Polarization and High QE

Very High VB offset in GaAsSb/AlGaAs Heterostructure



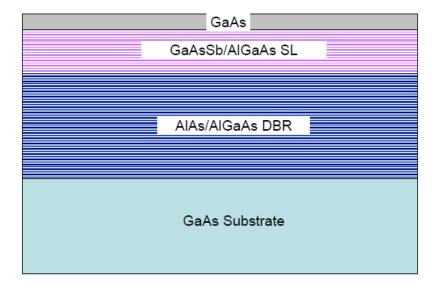
GaAsSb/AlGaAs SL: wider high P₀ range and larger tolerance to γ



Much Better Crystalline Quality Material: GaAsSb/AlGaAs SL

Higher order satellite peaks and Pendellosung fringes observed indicate better quality SL materials.

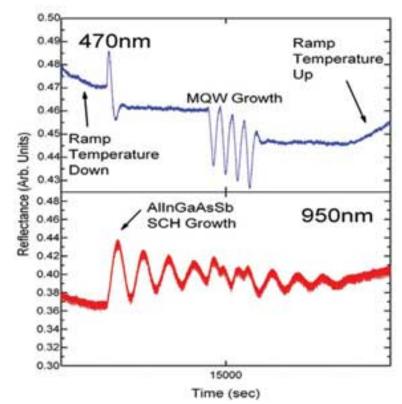
(Left)
XRD rocking curve
for GaAs/GaAsP SL
on 5um GaAsP
buffer grown on
GaAs substrate.


XRD rocking curve for GaAsSb/AlGaAs SL grown on GaAs.

GaAsSb/AlGaAs SL Photocathode Wafer Structures

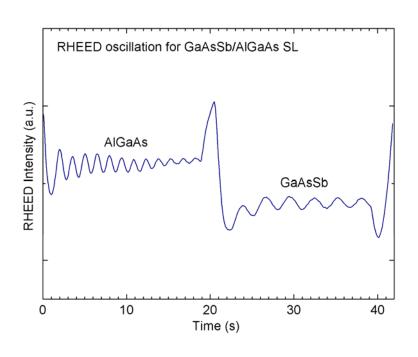
GaAsSb/AlGaAs SL photocathode w/o DBR

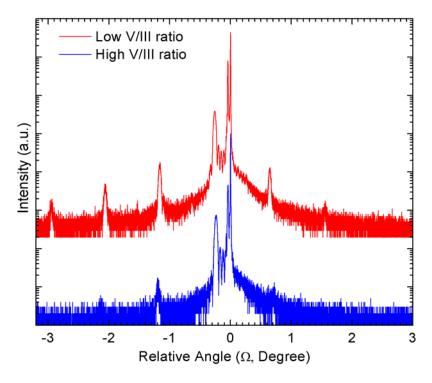
GaAsSb/AlGaAs SL photocathode w/ DBR


Accurate Temperature Control for Mixed Group-V Materials

GaAsSb: As/Sb composition highly dependent on growth temperature

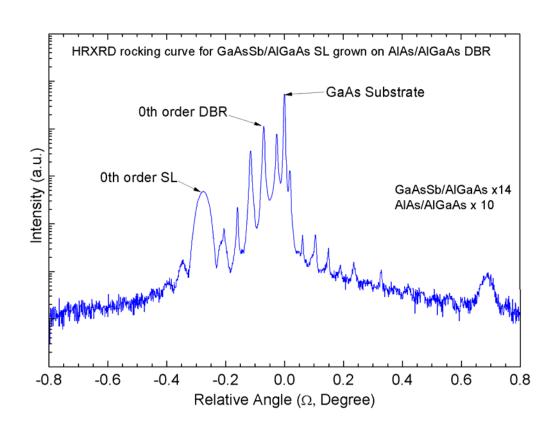
AccuTemp™ In-Situ 4000 Process Monitor


Temperature equivalent noise: <0.5C



High Quality GaAsSb/AlGaAs SL Grown by MBE

- Strong RHEED oscillations during whole process of MBE growth
- Up to 4th order satellite peaks observable in HRXRD rocking curves

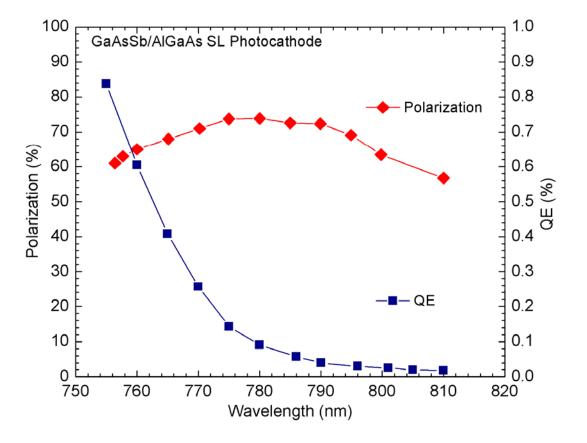

MBE Growth of AlAs/AlGaAs DBRs

Calibration of MBE growth of AIAs/AIGaAs DBR completed

Main challenge of growth of AlAs/AlGaAs DBR:

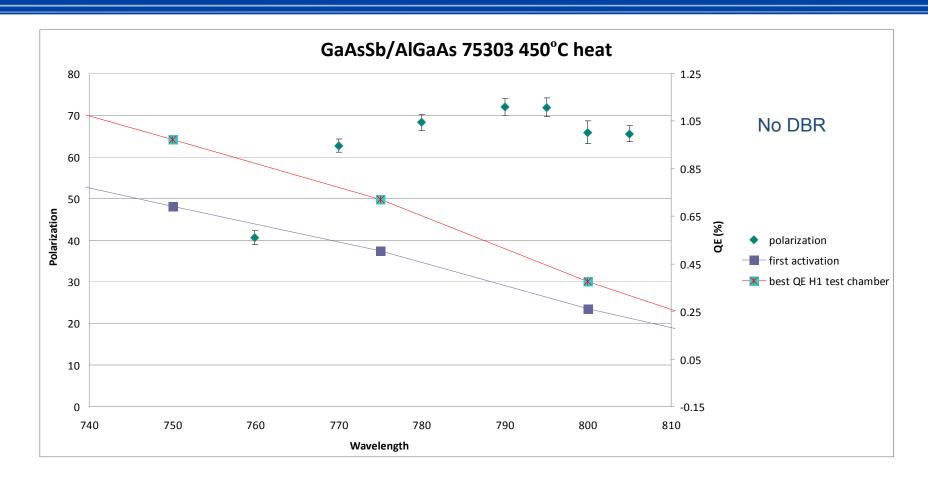
large growth temperature difference between AIAs (705 °C) and AIGaAs (615 °C).

A special recipe developed for MBE growth of AlAs/AlGaAs DBRs



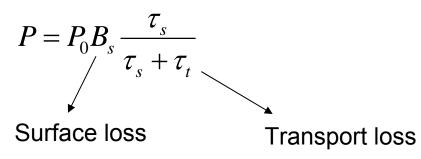
HRXRD rocking curve for GaAs0. $_{85}$ Sb $_{0.15}$ /Al $_{0.38}$ Ga $_{0.62}$ As (x14) SL grown on AlAs/Al $_{0.25}$ Ga $_{0.75}$ As (5.6nm/6.3nm x10) DBR on GaAs (100) substrate.

GaAsSb/AlGaAs SL Photocathode – Testing Results (1st batch)


- Up to 73% polarization achieved
- QE very low ~0.1%

Polarization and quantum efficiency for a fabricated GaAsSb/AlGaAs superlattice photocathode (w/o DBR).

GaAsSb/AlGaAs SL Photocathode – Testing Results (2nd batch)



Better QE by improved As capping process. The polarization is still below expected P_0 . What's the reason?

Possible Reasons for Low Polarization

Strain relaxation, transport loss, and spin relaxation

 τ_s : spin relaxation time, τ_t : the transport time.

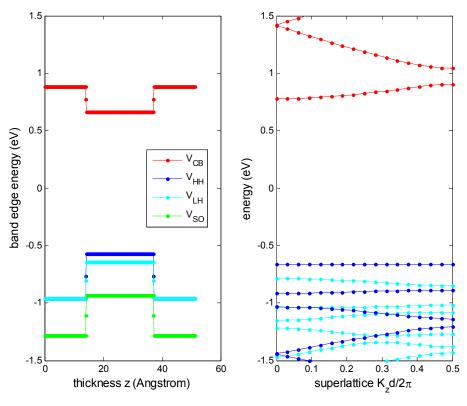
- Some SL layer might start to relax, especially the very top layers
- AlGaAs barrier might be too thick, resulting in lower electron mobility and shorter carrier lifetime
- Spin relaxation time in GaSb (~ 1ps) is shorter than that in GaAs (>7 ps)

Next Step

Remove strain relaxation

- More detailed analysis on GaAsSb/AlGaAs SL (Strain relaxation percentage, XRD reciprocal space mapping)
- 2. Lower Sb composition in SL

Minimize transport loss


- 1. Thinner AlGaAs barrier and lower Al composition
- 2. Further improvement of material quality
- Reduce spin relaxation
 Lower Sb and Al composition

Modified SL design (right) Initial polarization:

~96% @ γ=10 meV

~93% @ y=10 meV

GaAsSb0.12/AI0.30GaAs, 8-10 ML

HH-LH splitting = 123.56 meV me* = 0.0755, electron mobility 3845.54

