Nuclear Physics Low Energy Facilities and the SBIR/STTR Program

Georg Bollen Experimental Systems Division Director Facility for Rare Isotope Beams Michigan State University

DOE NP SBIR/STTR Exchange Meeting, August 6-7, 2014

Outline

- Acknowledgments
 - Materials provided by G. Savard, R. Janssen, P. Fallon, and others

Low Energy Nuclear Physics

- Refers to the energy scale of the science
 - Of order few MeV (nuclear binding scale)
- Encompasses the physics governing nuclear decays and how nuclear matter combines to create elements.
- It is where our field most directly impacts and touches our lives (energy, medicine, security)
- Provides a unique way to study fundamental properties of our universe (e.g. neutrinos)

Neutrino Physics MAJORANA Demonstrator

- MAJORANA is a proposed experiment to search for neutrinoless double-beta decay (0vββ) in ⁷⁶Ge
 - Is neutrino a Majorana particle? What is neutrino mass scale?
- MAJORANA Demonstrator
 - Located underground at 4850' Sanford Underground Research Facility
 - 40-kg of Ge detectors: 30 kg 87% enriched ⁷⁶Ge
 - Demonstrate backgrounds low enough to justify building a tonne scale experiment.
 - Establish feasibility of modular arrays of Ge detectors.
 - Searches for additional physics beyond the Standard Model
- N. Abgrall et al.

Advances in High Energy Physics Volume 2014, Article ID 365432, 18 pages http://dx.doi.org/10.1155/2014/365432

Funded by DOE-SC Nuclear Physics and NSF Particle and Nuclear Astrophysics Program

G. Bollen, SBIR/STTR Exchange Meeting, August 2014, Slide 4

Low Energy Nuclear Physics Rare Isotope Beam Facilities Worldwide

Low Energy Nuclear Science Themes

Properties of nuclei

- Develop a predictive model of nuclei and their interactions
- Many-body quantum problem: intellectual overlap to mesoscopic science, quantum dots, atomic clusters, etc.

Astrophysical processes

- Origin of the elements in the cosmos
- Explosive environments: novae, supernovae, X-ray bursts ...
- Properties of neutron stars

Tests of fundamental symmetries Structure

• Effects of symmetry violations are amplified in certain nuclei

Societal applications and benefits

• Bio-medicine, energy, material sciences, national security

Low Energy Nuclear Physics Facilities

Low Energy Nuclear Physics Facilities

- Other DOE facilities (local use)
 - LBNL 88---Inch Cyclotron

(http://cyclotron.lbl.gov)

» Basic and applied research with stable beams

• Texas A&M Cyclotron Ins1tute (http://cyclotron.tamu.edu)

» Nuclear physics research with stable and radioactive re-accelerated beams

• Triangle-Universities Nuclear Laboratory (TUNL)

(http://www.tunl.duke.edu)

- » High Intensity Gamma Source (HIGS)
- » Laboratory for Experimental Nuclear Astrophysics
- » Tandem Van de Graaff accelerator » Neutrons

ATLAS Facility at Argonne National Laboratory

CARIBU – Californium Rare Ion Breeder Upgrade Neutron-rich beam source

PRODUCTION: ²⁵²Cf source inside gas catcher (up to 1 Ci)

- Thermalizes fission fragments
- Extracts all species quickly
- Forms low emittance beam
- SELECTION: Isobar separator
 - Purifies beam
- DELIVERY: beamlines and preparation
 - Switchyard
 - Low-energy
 buncher
 - Charge breeder
 - Post-accelerator ATLAS

ATLAS Layout After Recent Upgrades

FRIB - Facility for Rare Isotope Beams World-leading Next-generation Rare Isotope Beam Facility

- Rare isotope production via in-flight technique with primary beams up to 400 kW, 200 MeV/u uranium
- Fast, stopped and reaccelerated beam capability
- Upgrade options
 - 400 MeV/u for uranium
 - ISOL production multi-user capability

FRIB project start 6/2009 Civil construction started 3/2014 Technical construction to start 10/2014 Managed to early completion 12/2020 CD-4 (project completion) 6/2022

Total project cost \$730 million

MICHIGAN STATE UNIVERSITY

NSCL enables pre-FRIB science

FRIB Beams Will Enable New Discoveries

U.S. Department of Energy Office of Science Michigan State University

G. Bollen, SBIR/STTR Exchange Meeting, August 2014, Slide 13

FRIB Civil Construction Underway Began 3 March 2014

First big concrete pour July 23, 2014

Facility for Rare Isotope Beams

FRIB Accelerator Systems **Superconducting RF Driver Linac**

- Accelerate ion species up to ²³⁸U with energies of no less than 200 MeV/u
- Provide beam power up to 400kW
- Energy upgrade to 400 MeV/u for uranium by filling vacant slots with 12 SRF cryomodules

G. Bollen, SBIR/STTR Exchange Meeting, August 2014, Slide 16

FRIB Accelerator Systems

- Cavity preproduction and cryomodule prototyping underway
- Cavities exceed FRIB performance goals
- Liquid lithium charge stripping scheme validated

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

G. Bollen, SBIR/STTR Exchange Meeting, August 2014, Slide 17

FRIB Fragment Separator Three Separation Stages

- Three stage magnetic fragment separator
 - High acceptance, high resolution to maximize science
 - Provisions for isotope harvesting incorporated in the design
- Challenges
 - High power densities
 - High radiation

```
Multi-slice rotating
graphite target
```


Fast, Stopped, and Reaccelerated Beam Experimental Areas and Equipment

Reaccelerated Beams at NSCL and FRIB with ReA Facility

First radioactive beam experiment with ReA3 August 2013

FRIB

Instrumentation for Low Energy Nuclear Physics

- A variety of instrumentation is required to make use of science opportunities with rare isotope beams
 - Detectors
 - » High efficiency, high resolution
 - Spectrometers
 - » Large acceptance, high rigidity
 - Ions and atom traps, lasers
 » High-precision experiments
 - Control systems and data acquisition
- High-power facilities like FRIB have challenges that provide basis for needed developments – higher beam rates need to be met with high performance instrumentation
 - High beam rates (event rates)
 - Radiation damage mitigation
 - High-power density mitigation

Instrumentation for Low Energy Nuclear Physics: Example GRETINA

- GRETINA is one of the most advanced gamma-ray detector array for nuclear science uses highly segmented detectors to track and reconstruct gamma-rays.
- GRETINA is the first phase of the larger Gamma Ray Energy Tracking Array (GRETA).

Instrumentation for Low Energy Nuclear Physics: Example GRETINA

- First campaign successfully completed at NSCL/MSU
 - Over 3000 hrs of beam-time and 200 users in the first year
 - Nuclear Shell Evolution, Nuclear Astrophysics, Collective Phenomena

 New GRETINA science campaign at ATLAS Argonne National Laboratory successfully started

GRETINA at NSCL's S800 spectrograph

Instrumentation for Low Energy Nuclear Physics: Example SECAR

- Proposed SECAR recoil separator to directly measure astrophysical reaction rate
- Multi-institutional collaboration includes most experimental nuclear astrophysicists in US

Extreme Stars

- Thorne Zytkov objects?
- Massive
 first stars

Beam/recoil ratio ~10¹¹-10¹⁵ Recoil-beam mass difference 1-4 Need ~100% recoil transmission

Accreting compact objects

- X-ray bursts
- Novae

Supernovae

- vp-process, p-process
- Explosive burn

Over 1300 Users Engaged and Ready for Science

- Users are organized as part of the independent FRIB Users Organization (FRIBUO) <u>www.fribusers.org</u>
- FRIBUO has 1350 members (92 U.S. colleges and universities, 10 national laboratories, 55 countries) as of April 2014

- FRIBUO has 19 working groups on experimental equipment
- 21-23 August 2014, Low Energy Community Meeting, Texas A&M University

August 2013 Low-Energy Community Meeting 274 participants

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

G. Bollen, SBIR/STTR Exchange Meeting, August 2014, Slide 25

Low Energy NP User Facilities and the SBIR/STTR Program

- SBIR/STTR program is important for the DOE Low Energy NP facilities
 - Development needs for new techniques, instrumentation, and supporting system are suitable SBIR/STTR projects.
 - New, higher power facilities are being built worldwide and existing facilities are being upgraded. Many low energy NP facilities exist worldwide.
- Examples of possible areas for SBIR/STTR activities are
 - High-rate, position sensitive particle tracking detectors and timing detectors for high-energy heavy-ions
 - Fast data acquisition electronic
 - Target technology (high-power targets, thin targets, windows, strippers, ...)
 - Ion source technology (high current sources, charge breeders), beam catcher/release systems
 - Radiation resistant magnets (HTS, thermal insulation)
 - Radiation resistant precision magnetic field probes
 - Other accelerator related developments

Summary

- There are exciting times ahead for low energy nuclear physics in the US.
- FRIB under construction at MSU will be a world-leading rare isotope facility that will enable new discoveries
 - A strong user community exists (>1300 members)
- Existing LE radioactive beam facilities in the US provide world-class research opportunities prior to FRIB and beyond.
- The DOE NP SBIR/STTR program contributes to making Low Energy Nuclear Physics in the US successful

