

STRAW Gauge: from UHV to XHV in One Package... R&D through Beta Testing

Gregory Mulhollan Saxet Surface Science 3913 Todd Lane, Suite 303 Austin, TX 78744

Funding

Department of Energy SBIR Grant DE-SC0004437

Outline

• Motivation

- Nuclear physics e^{-} sources
- Improved vacuum monitor

• Instrument components

- Hardware
- Software
- Instrument operation
 - In use
 - Calibration and data

• Sensor

- Construction and operation
- Details, details, details...
- Add-ons/spin-outs
 - Software
 - Hardware
- Summary

STRAW Vacuum Gauge

SAXET CESCIENCE

• Motivation: Monitor environment in nonperturbing manner

- Photocathode

- * Source of free electrons
- * Electrons ejected upon photon absorption
- * Anything with sufficiently high *hv*

- Semiconductor (NEA GaAs)

- * Activation allows bandgap energy excitation to generate free electrons
- * Very sensitive to background gas contamination (shortened lifetime)
- * Manipulation of crystalline symmetry enables high electron spin-polarization

GaAs band structure in vicinity of Γ point

NEA Surface

Gas + charged particles = damage!

Kinetic Damage

Chemical Changes

DOE Nuclear Physics Exchange Meeting, Gaithersburg, MD, November 6-7, 2013

Gregory Mulhollan, Saxet Surface Science

Gas + charged particles = damage!

Kinetic Damage

Chemical Changes

DOE Nuclear Physics Exchange Meeting, Gaithersburg, MD, November 6-7, 2013

Gregory Mulhollan, Saxet Surface Science

Gas + charged particles = damage!

Kinetic Damage

Chemical Changes

How to monitor extremely low pressures (UHV-XHV)?

- Pressure ranges of interest: lower pressure = longer photocathode lifetimes
 - UHV (Ultra-high vacuum)
 - $1x10^{-12}$ Torr < P < $1x10^{-9}$ Torr
 - XHV (Extreme-high vacuum)
 - $P < 1x10^{-12}$ Torr
- Ion gauge: particle and heat generation
 - Standard (Bayard-Alpert, 1x10⁻¹¹ Torr, x-ray limit)
 - Extractor (Redhead 1960s, extends to 1x10⁻¹², Leybold, Ulvac)
 - Radioisotope powered (no heater)
- Cold cathode gauge: particle generation
 - Commercial UHV (Balzers, 7.5x10⁻¹² Torr)
 - Ion pump (Very low current monitoring: leakage currents, pump 'sleep')

SAXET SURFACE SCIENCE

UHV/XHV gas primarily hydrogen

- Titania (titanium oxide) nanotube arrays have very strong response to hydrogen at STP
- Phase I result: even stronger than anticipated in vacuum

and K.G. Ong, Unprecedented Ultra-High Hydrogen Gas Sensitivity in Undoped Titania Nanotubes, *Nanotechnology* **17**, 398(2006)]

SEM cross section of titania nanotubes

 $1 \mu m$

• Instrument components

- Components
 - * Sensor head
 - * Custom designed control unit
 - * Software for DAQ

Similar form factor to modern RGA systems, e.g. MKS Microvision.

- Hardware
 - * Sensor head

Vacuum feedthrough with electrical and optical transport

Device bias/measure, thermocouple and illumination

* Control box –

Custom designed circuit board: source/measure using 32 bit PIC running @ 20 MHz

* Power supplies/cabling

Separate power conversion box (AC to DC) to minimize noise

- Software

* Onboard controller firmware (programmed in C)

* Python for computer interface (NumPy + SciPy)

* Packaged installer (Windows via Py2exe)

* Manual install for Mac or Linux

STRAW Control Box Disassembled (optic plate not shown)

* Sensor head flange

- -- SST 304L 2-3/4" Conflat type: Larson Electronic Glass Products
- -- Glass feedthrough functions as optical window to back of nanotube array
- -- Pin configuration is that of the old Loctal vacuum electron tube
- -- Air side threaded holes for control box support rods

Loctal socket (front)

STRAW gauge sensor head flange Air side is to left, vacuum to right

* Sensor head flange connections

- -- Titania nanotube array sensor is mounted on TO8-550 header
- -- Sensor in mounted inside of physical shield with top hat light baffle
- -- Near-device temperature is monitored by type K thermocouple
- -- All four legs of the header are wired to the air side; only one pair used at a time

STRAW gauge sensor head flange Sensor is mounted inside of shield

- * Control box
 - -- Externally powered, flange mounted chassis
 - -- PIC controlled, USB-to-serial communicating measurement board (COM emulation)
 - -- Onboard thermocouple readout
 - -- Optical boost LED output with photodiode monitor

Support rod assembly

Rear of control box

Front of control box

DOE Nuclear Physics Exchange Meeting, Gaithersburg, MD, November 6-7, 2013

Calibration		
Calib file in use:		
./calibs/\Pcal_Str	aw_default.txt	
Offset= 0.00E+00	Slope= 3.33E+00	
Enter Gauge Pressu	ure (exponential format	
Examp	ole: '2.3e-8'	
I	Torr Submit	
Derive calibration r	parameters from data.	
Select current file (or load previous data	

Calibration panel

Board Serial Num:	2	Update
Nominal Voltage (V):	0.50	Update
Logging Period(s):	15.0	Update
Starting Number of Points for Slope	e: <mark>25</mark>	Update
Maximum slope error percent:	10.0	Update
TCR Coefficient:	0.020	Update
Light Source level (uA):	1.00	Update
Voltage Ramp Step Size (V):	0.050	Update
Calibration slope fit width (hours):	0.500	Update
Light Source Status:	Off	Turn On
Web Server Status:	Off	Turn On

Configuration panel

Conductance slope vs time

• Instrument in operation

STRAW UI on low end laptop running Windows XP

Comparison of pressure vs time for the STRAW vs. CCG

SAXET SURFACE SCIENCE

- Sensor
 - Construction/nanotube array
 - * Titania (TiO₂) nanotubes anodically grown from Ti film
 - * Wall thickness comparable to space charge length (all surface, no bulk)
 - * Conduction along nanotubes dependent on surface chemistry
 - * Absorption of hydrogen facilitated by Pd nanoparticles + Pt contacts
 - * Resistance change proportional to hydrogen absorption

SEM photograph of the titania nanotubes end-on from the devices with pores an average size of 70 nm Better hydrogen response in vacuum is obtained from the devices with smaller pore sizes.

- Construction/connectorizing
 - * Glass substrate clamp mounted on TO8-550 header (Kovar, Au, glass)
 - * Anodized films are ~transparent
 - * Pt contact pads Au wire bonded to header pins

SAXET SURFACE SCIENCE

- Operational electrical characteristics
 - * Signal conversion very simple! V = IR (or V=I/G)
 - * Operational parameters: Bias = 0.40 V, I \leq 20 μ A
 - * Tolerant device, but best if handled as ESD sensitive
 - * Single point grounding used to eliminate ground loop noise
 - * Most other electrical noise eliminated by simple signal averaging (100x)
 - * Stability of high quality off-the-shelf measurement instruments sufficient

Simplified 1D diagram of nanotube array electrical circuit. Each parallel cluster is made up of the nanotubes under the individual Pt contact pads.

- Details, details, details

* Sensitivity boost for lowest pressure operation

Enhanced sensitivity via illumination

* Titania is semiconducting, large TCR

* Other gasses influence sensitivity

CH₄ yes, CO yes, CO₂ no

• Add-ons/Spin outs

- Integral oxygen source for hydrogen absorption reversal. Silver oxide in stainless steel sleeve. One shot only!

- Web-based interrogation of host computer

- Remote readout of pressure with 'stale' data watchdog

RGA spectrum while operating oxygen source

 Market control board as low cost low voltage alternative for semiconducting nano-device I-V characterization Stability meets or exceeds that of commercial instruments (multi-task, so much higher \$\$\$)

Saxet

Saxet is a sole proprietorship founded in 2002

– Who did the work?

Greg Mulhollan

Program management

Robert Kirby

System construction/measurement

John Bierman

Control system

Andrew Milder

Vacuum technology expert

– Where was the work done?

-1,982 ft² in the Pecan Business Park in south Austin

 Texas is the 28th state and was a republic prior to statehood

– Austin is home to the Texas state capital, the University of Texas and many high-tech companies including Samsung (flash memory chips & mobile device processors)

Summary

- STRAW UHV/XHV vacuum gauge system constructed
 - Does not perturb system
 - On-flange controller, host computer readout
- Titania nanotube sensor technology
 - High hydrogen sensitivity, with optical boost even better
 - Sensor technology tested, tested and tested some more!
- One unit is out currently for beta testing
- Future
 - Phase IIB or not to Phase IIB?
 - Commercialization
 - * Direct sales
 - * Two entities shown interest as product line

Atmosphere to 10⁻¹² Torr requires a drop of 15 orders of magnitude in pressure.

Atmosphere to 10⁻¹² Torr requires a drop of 15 orders of magnitude in pressure.

Going beyond normal limits...

Atmosphere to 10⁻¹² Torr requires a drop of 15 orders of magnitude in pressure.

Going beyond normal limits...

Atmosphere to 10⁻¹² Torr requires a drop of 15 orders of magnitude in pressure.

Going beyond normal limits...

Requires specialized equipment...

Going beyond normal limits...

Atmosphere to 10⁻¹² Torr requires a drop of 15 orders of magnitude in pressure.

Requires specialized equipment...

Going beyond normal limits...

Atmosphere to 10⁻¹² Torr requires a drop of 15 orders of magnitude in pressure.

Requires specialized equipment...

And a good deal of nerve!

Going beyond normal limits...

And a good deal of nerve!

Requires specialized equipment...