
11/7/2013 Integrated Sensors, LLC 

High-Performance Plasma Panel Based 
Micropattern Detectors 

Peter S. Friedman 
 

Integrated Sensors, LLC  /  Ottawa Hills, OH  /  419-536-3212 
(peter@isensors.net  /  www.isensors.net)  

 
 

November 7, 2013 
 
 

DOE-NP SBIR/STTR Exchange Meeting 
Gaithersburg, MD 

    ntegrated     ensors™   Transforming radiation detection 

mailto:peter@isensors.net
http://www.isensors.net/


11/7/2013 Integrated Sensors, LLC 2 2 2 2 

PPS Collaboration 
• Integrated Sensors, LLC  

  Peter Friedman (PI) 
 

• Oak Ridge National Laboratory, Physics Division 
  Robert Varner (PI) ,  James Beene 
 

• University of Michigan, Department of Physics 
   Daniel Levin (PI),  Robert Ball,  J. W. Chapman,  Claudio Ferretti,  
   Curtis Weaverdyck,  Riley Wetzel,  Bing Zhou 
 

• Tel Aviv University (Israel), School of Physics & Astronomy 
Erez Etzion (PI), Yan Benhammou, Meny Ben Moshe, Yiftah Silver 
 

• General Electric Company,  Reuter-Stokes Division 
Kevin McKinny (PI), Thomas Anderson 
 

• Ion Beam Applications S.A. (Belgium) 
Hassan Bentefour (PI) 



11/7/2013 Integrated Sensors, LLC 3 3 3 3 

Outline  

• Motivation – The Concept 

• Plasma display panel (PDP) operational principles  

• Plasma panel sensor (PPS) description  

• Simulations 

• Lab results 

• Next generation designs 

• Summary 
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Motivations 
  
• The Concept:  Plasma display panels as particle detectors ($ 0.03/cm2) 

–  over 40 years of plasma display panel (PDP) manufacturing & cost reductions 
 

• Hermetically sealed  
–  no gas flow 
–  no expensive and cumbersome gas system 

 

• Scalable dimensions, long life, low mass & compact profile 
– cm to meter size with thin substrate capability, robust materials/construction 
 

• Potential to achieve contemporary  performance benchmarks 
– timing resolution  approximately 1 ns 
– granularity (cell pitch)  50 - 200 µm,  spatial resolution  tens of µm 
– rad hardness,  B-field insensitivity,  high rates,  2D readout 

 

• Applications 
– nuclear & HEP, medical/particle beam imaging, homeland security, industry 
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TV Plasma Panel Structure  

A Display panel is a 
complicated 
structure with 
   

– MgO layer 
– dielectrics/rib 
– phosphors 
– protective  layer 
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TV Plasma Panel Structure  

• For detector, a 
simplified version 
with readout & 
quench resistor 

   

– No MgO layer 
– No dielectric/rib 
– No phosphors 
– No protective layer 
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The Plasma Panel Sensor (PPS)  

            Each pixel operates like an independent micro-
Geiger counter and is activated either by direct 
ionization in the gas, or indirect ionization in a 
conversion layer.  The latter results in subsequent 
emission of charged particles into the gas that 
initiates a localized gas discharge at a pixel site 
which is detected by the readout electronics.  PPS 
devices based primarily on direct ionization have 
been the focus of our research efforts to date. 
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PPS Radiation Detection  
• For charged particles          direct ionization in the gas  (e.g. 

alphas, betas, protons, heavy nuclei, minimum ionizing 
particles or MIPs such as muons, etc.). 

 

• For neutral particles         indirect ionization via a conversion 
layer (e.g. neutron capture in a conversion material such as 
3He, 10B  or 157Gd that emits charged particles into the gas). 

 

• For photons (e.g. X-rays / gammas, UV)         direct ionization 
in the gas, or indirect ionization via a conversion layer  (e.g. 
electron emission via Compton scattering or photocathode). 
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PPS  Radiation Sources of Interest  
   Sources demonstrated to date: 

 

• Cosmic-Ray Muons (~ 4 GeV at sea-level) 
 

• Muon Beam:  180 GeV range (for high energy physics) 
 

• Beta Particles (max. energy): 137Cs (1.2 MeV), 90Sr (2.3 MeV), 106Ru (3.5 MeV) 
 

• Proton Beam:  226 MeV (for proton beam cancer therapy & proton-CT) 
 

• Neutrons:  Thermal neutrons (for neutron scattering & homeland security) 
 

• Gamma-Rays: 60Co (~1.2 MeV), 57Co (122 keV), 99mTc (143 keV), 137Cs (662 keV) 
 

• UV-Photons:  “Black UV-lamp” with emission at 366 nm 
 
   Sources planned for demonstration in 2014 - 2015 
 

• Radioactive Ion Beams:  1 - 100 MeV/u (for nuclear physics in 2014) 
 

• X-Ray Beams:  6 - 8 MeV (for X-ray beam cancer therapy) 
 

• Electron Beams: 6 - 20 MeV (for electron beam cancer therapy) 
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Commercial Panel Designs  

• Two basic configurations for the 
electrodes:  CD and SD 

 

• Discharge dimensions ≈ 100 µm 
  

• Gas pressure ≈ 400-600 Torr 
(usually Ne, Xe, Ar, Kr, He) 

 

• Applied voltage typically 
hundreds of volts 

Surface Discharge (SD) 

Columnar Discharge (CD) 
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Commercial Plasma Panel 
• Columnar Discharge (CD) – Pixels at  intersections of orthogonal  

electrode array 
• Electrode sizes and pitch vary between different panels  

 

220 –  450 µm  



11/7/2013 Integrated Sensors, LLC 12 12 12 

PDP    PPS 
1. Procure OEM (pinball machine) panels without PDP gas  

2. Alter OEM electrode material (e.g. replace SnO2 with Ni ) 

3. Modify seal, add gas port and high vacuum shut-off valve 

4. Pump down,  bake-out    

5. Fill with custom gas mixture, seal by “closing” valve 

6. Configure with HV feed, quench resistors, readout/DAQ 

 

 Panels operable for months (even 1 year) after gas-filling 
without hermetic seal (i.e. only “closed” shut-off valve) 
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PPS with CD-Electrode Structure 
 (≈ 20-25% active cell/pixel fill-factor) 
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1st Generation Prototype PPS 
Modified Commercial Panel 

“Refillable” gas 
shut-off valve 

for R&D testing 

Fill-Factor:  23.5% 

Cell pitch:  2.5 mm 
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Principles of Operation 
• Accelerated electrons 

begin avalanche  
 

• Large electric field leads 
to streamers 

 

• Streamers lead to 
breakdown - roughly 
follows Paschen’s law.  

anode 

cathode 

Charged particle track  
 HV(-) 

50-100 Ω 

10-1000 MΩ 

Gas volume in pixel  

25
0 

µm
 -1

m
m

 

50 µm -1mm 

•  Gas gap becomes conductive 

•  Voltage drops on quench resistor 

•  E-field inside the pixel drops 

•  Discharge terminates 
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Equivalent Circuit Simulations 
• SPICE simulation incorporates the inductances 

and capacitances calculated with COMSOL 
• Electrical pulse is injected into the cell and the 

output signal is simulated 
Single cell SPICE model 

Many cells SPICE model 
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Electromagnetic Field Model 

• Each cell is modeled as a 
capacitor 

• COMSOL model for the 
electric field inside the 
cell 

• Capacitances  and 
inductances are also 
calculated 

E-field in the PDP pixels 

5 mm 

0 

-5 mm 

E-field is 
localized 

No E-field 
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Collimated β-Source Simulation 

Primary electrons exiting 
the graphite collimator 
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Design & Operating Parameters 
( most of which are currently being investigated )  

•    Cell Design:  fill-factor, gas gap, discharge gap 

               - open vs. closed architecture 

          - columnar vs. surface discharge    

•    Electrodes:   pitch, width, material 

•    Cell capacitance 

•    Operating voltage 

•    Quench resistance 

•    Gas mixture & pressure 

•    Substrate material (e.g. thickness, density) 

•    Dielectric surfaces 
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Performance Issues 
( most of which are currently being addressed ) 

• After pulsing & discharge spreading 
• Gas hermeticity & decomposition 
• Response in magnetic field  
• Electrode degradation 
• Radiation hardness 
• High rate response 
• Spatial uniformity 
• Spatial response 
• Time response 
• Efficiency 
• Readout 
• Cost 
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Panel Signals  (β - source) 
 Pulse from Xe filled panel in 2003, 

tested 2010, 1.0 mm electrode pitch.   

0.25 volts / div 

5 ns 
Volt level amplitudes 
Rise time 1-2 ns 
Uniform pulse shape 

2.5 mm 
pitch panel 
 
Attenuated 
pulse 40dB 
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Response to β - Source 
Vs. applied High Voltage 

Efficiency Plateau 
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• Cancer treatment facility (ProCure in Warrenville, IL)  
• Beam energy 226 MeV, proton rate > 1 GHz  

IBA Proton Beam Test 

Panel on motorized patient table 

The Panel 
1% CO2 in Ar 

(600 Torr) 
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Proton Beam Results - 1 mm Scan 
•  1 mm diameter collimator on the beam axis 
•  Proton rate on panel ~ 2 MHz (centered over ~ 1 pixel) 
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Collimated Source Position Scan 

Motorized X-Y table Test Panel 

•  Light-tight , RF 
shielded box  
•  1 mm pitch panel 
•  20 readout lines  
•  1.25 mm wide 
graphite collimator 

106Ru collimated source 
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 Collimated β – Source Position Scan (106Ru) 

* 

*Electrode Pitch 1.0 mm 
 Position resolution ~ 0.7 mm 

     Scan was in 100 µm steps 
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Source Moved in 0.1 mm Increments 
(1 mm pitch panel) 
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  Collimated β – Source Measurement (106Ru) 

Electrode Pitch = 1.0 mm 
Position resolution ~ 700 µm 

Geant4 simulation 
FWHM=2.6 mm 
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CR Muon Measurement Setup 

Trigger: two 3” x 4’’ 
scintillation pads in 
coincidence (above 
& below the PPS) 

30 HV lines 
independently 
powered and 
quenched 

24 RO channels 
independently 
terminated, 
attenuated and 
readout 
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Stability - Response to CR Muons 

2.5 days 
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Uniformity - Response to CR Muons 

All channels active and exhibit 
similar levels of activity (± 20%) 
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Timing for Different Gases 
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Gas mixtures & pressures working at higher voltage        faster timing 

(raw signals – not trigger subtracted) 
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CR Muon Arrival Time vs. HV 

33 

Ar / 1% CF4  at 730 Torr (raw signals – not trigger subtracted)  
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Time Spectrum of CR Muons  
Using  65% 4He / 35% CF4  at 730 Torr 

• cable offset is ~ 100 ± 3 ns 
• trigger time subtracted 
• not time walk corrected 

Jitter < 10 ns 
Arrival ~ 38 ± 3 ns 



11/7/2013 Integrated Sensors, LLC 35 

Time Spectrum of CR Muons 
Using  80% 3He / 20% CF4  at 730 Torr 

• trigger time subtracted 
• not corrected for time 

walk of trigger signal 
• arbitrary cable offset 

Jitter < 3 ns 
Arrival ~ 31 ± 3 ns 

•  cable offset is ~ 100 ± 3 ns 
•  trigger time subtracted 
•  not time walk corrected 
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PPS Efficiency for CR Muons  
(10% CF4 in Ar, at 740 Torr, 0.38 mm gas gap, 2.5 mm electrode pitch) 

Maximum Pixel Efficiency  =  60% 

Pixel  Efficiency  =  53%  
(88% of maximum possible) Assumptions: 

• Uniform trigger response 
• Constant effective pixel size  
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Thermal Neutron Detection 
(in collaboration with GE, Reuter-Stokes)  

37 

Objectives:   Develop alternative to 3He  as high efficiency neutron detector  
with high  γ  rejection 

This Test:   Explore PPS as a general detector structure for converting 
neutrons using thin gap 3He gas mixture 

Gas Fill:   80% 3He  +  20% CF4   at 730 Torr    
 
Panel:      2.5 mm pitch large panel used for CR muons 
       Instrumented pixels = 600,    Area:  6 in2    
 
Method:     Irradiate panel with thermal neutrons from various sources 
     high activity (10 mrem/hr) gammas 
    conduct count rates experiment with & w/o  neutron mask plates 
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Neutron Rate vs. HV 
(20% CF4 in 80% 3He, 730 Torr)  

PPS 
panel 

Neutron blocking & 
γ transmitting plate 

(10B-Al) 

neutron 
source   
( 252 Cf ) 

Background 
subtracted data 
(neutrons only) 

Efficiency  
Plateau at 
~ 0.67 Hz 

Background:  
γ from source 

neutrons + γ 
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Good γ rejection even before any 
optimizations offered by: 
 

1)  Thinner substrates 
2)  Lower gas pressure 
3)  Thinner metallization 
4)  Pb free dielectric around pixels 
 

 

HV (volts) 
 

γ rate (Hz) 
  

γ efficiency 

970 0.09 3.0 x 10-7 

1000 1.2 3.7 x 10-6 

1030 7.9 2.5 x 10-5 

 
 
 

γ  Rate vs. HV 
 (20% CF4 in 80% 3He, 730 Torr)  PPS 

panel 

3x105 γ/sec at instrumented region  

Calibrated intense γ-source (137Cs) 
3 x 105 γ/sec at instrumented region    



Neutron Efficiency Results 

• Geant4  simulation (GE) of the neutron capture 
rate based on source activity:   0.70 ± 0.14 Hz 

 

•  PPS measured rate:   0.67 ± 0.02 Hz 

15/10/13 Y. Benhammou Tel Aviv University 40 

Approximately 100% of captured neutrons were detected 
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Microcavity  Concept 

41 

COMSOL simulation: 

radial discharge gaps  
cavity depth  longer path lengths 
individually quenched cells  
isolation from neighbors 

E-field 

glass 

Equipotential lines 



11/7/2013 Integrated Sensors, LLC 42 42 42 42 42 

Microcavity Prototype (Back Plate) 

Via 
Plug 
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Sealed Microcavity-PPS 

Bottom Half of “Open” 
Bakeout Oven 

Microcavity-PPS attached to 
vacuum-line / gas-fill system 
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Ongoing Efforts (2013 - 2014) 

–  Microcavity-PPS program 

• Final fabrication & initial testing 

• Thin & ultrathin cover plates 

–  2D readout 

–  Demonstrate high cell / pixel efficiency  

–  Pursue higher resolution panels, faster timing 

–  Stacked panels for 3D tracking 
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Summary of 1st Generation Prototypes 
PPS sensitive to: 
  

– Highly ionizing particles:  betas, protons, neutrons (with good  
gamma rejection) 

 

– Minimum ionizing particles:  muons  
 
Large amplitude (volts) & fast pulses (1 ns rise time) 
 
Timing resolution < 10 ns  &  dropping (e.g. 3 ns)   

 
Spatial resolution < electrode pitch (1 mm) & dropping 
 
Operate for months, even 1 year (sealed only by valve) 
 
Operate in high rate environments 
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