High-Performance Plasma Panel Based Micropattern Detectors

Peter S. Friedman

Integrated Sensors, LLC / Ottawa Hills, OH / 419-536-3212 (peter@isensors.net / www.isensors.net)

November 7, 2013

DOE-NP SBIR/STTR Exchange Meeting Gaithersburg, MD

Integrated Sensors™

Transforming radiation detection

PPS Collaboration

- Integrated Sensors, LLC
 Peter Friedman (PI)
- Oak Ridge National Laboratory, Physics Division Robert Varner (PI), James Beene
- University of Michigan, Department of Physics Daniel Levin (PI), Robert Ball, J. W. Chapman, Claudio Ferretti, Curtis Weaverdyck, Riley Wetzel, Bing Zhou
- Tel Aviv University (Israel), School of Physics & Astronomy Erez Etzion (PI), Yan Benhammou, Meny Ben Moshe, Yiftah Silver
- General Electric Company, Reuter-Stokes Division Kevin McKinny (PI), Thomas Anderson
- Ion Beam Applications S.A. (Belgium) Hassan Bentefour (PI)

Outline

- Motivation *The Concept*
- Plasma display panel (PDP) operational principles
- Plasma panel sensor (PPS) description
- Simulations
- Lab results
- Next generation designs
- Summary

Motivations

• The Concept: Plasma display panels as particle detectors (\$0.03/cm²)

- over 40 years of plasma display panel (PDP) manufacturing & cost reductions

• Hermetically sealed

- no gas flow
- no expensive and cumbersome gas system
- Scalable dimensions, long life, low mass & compact profile
 - cm to meter size with thin substrate capability, robust materials/construction

• Potential to achieve contemporary performance benchmarks

- timing resolution \rightarrow approximately 1 ns
- granularity (cell pitch) \rightarrow 50-200 µm, spatial resolution \rightarrow tens of µm
- rad hardness, B-field insensitivity, high rates, 2D readout

Applications

nuclear & HEP, medical/particle beam imaging, homeland security, industry

TV Plasma Panel Structure

A Display panel is a complicated structure with

- MgO layer
- dielectrics/rib
- phosphors
- protective layer

TV Plasma Panel Structure

The Plasma Panel Sensor (PPS)

Each pixel operates like an independent *micro*-*Geiger counter* and is activated either by *direct* ionization in the gas, or *indirect* ionization in a conversion layer. The latter results in subsequent emission of charged particles into the gas that initiates a localized gas discharge at a pixel site which is detected by the readout electronics. PPS devices based primarily on direct ionization have been the focus of our research efforts to date.

PPS Radiation Detection

- For *charged particles direct* ionization in the gas (e.g. alphas, betas, protons, heavy nuclei, minimum ionizing particles or MIPs such as muons, etc.).
- For *neutral particles indirect* ionization via a conversion layer (e.g. neutron capture in a conversion material such as ³He, ¹⁰B or ¹⁵⁷Gd that emits charged particles into the gas).
- For *photons* (e.g. X-rays / gammas, UV) *direct* ionization in the gas, or *indirect* ionization via a conversion layer (e.g. electron emission via Compton scattering or photocathode).

PPS Radiation Sources of Interest

Sources demonstrated to date:

- Cosmic-Ray Muons (~ 4 GeV at sea-level)
- Muon Beam: 180 GeV range (for high energy physics)
- Beta Particles (max. energy): ¹³⁷Cs (1.2 MeV), ⁹⁰Sr (2.3 MeV), ¹⁰⁶Ru (3.5 MeV)
- Proton Beam: 226 MeV (for proton beam cancer therapy & proton-CT)
- Neutrons: Thermal neutrons (for neutron scattering & homeland security)
- Gamma-Rays: ⁶⁰Co (~1.2 MeV), ⁵⁷Co (122 keV), ^{99m}Tc (143 keV), ¹³⁷Cs (662 keV)
- UV-Photons: "Black UV-lamp" with emission at 366 nm

Sources planned for demonstration in 2014-2015

- Radioactive Ion Beams: 1-100 MeV/u (for *nuclear physics in 2014*)
 - X-Ray Beams: 6-8 MeV (for X-ray beam cancer therapy)
 - Electron Beams: 6-20 MeV (for electron beam cancer therapy)

Commercial Panel Designs

- Two basic configurations for the electrodes: CD and SD
- Discharge dimensions $\approx 100 \ \mu m$
- Gas pressure ≈ 400-600 Torr (usually Ne, Xe, Ar, Kr, He)
- Applied voltage typically hundreds of volts

Columnar Discharge (CD)

Surface Discharge (SD)

Commercial Plasma Panel

- Columnar Discharge (CD) Pixels at intersections of orthogonal electrode array
- Electrode sizes and pitch vary between different panels

PDP PPS

- 1. Procure OEM (*pinball machine*) panels *without* PDP gas
- 2. Alter OEM electrode material (e.g. replace SnO₂ with Ni)
- 3. Modify seal, add gas port and high vacuum shut-off valve
- 4. Pump down, bake-out
- 5. Fill with custom gas mixture, *seal by "closing" valve*
- 6. Configure with HV feed, quench resistors, readout/DAQ

Panels operable for months (even 1 year) after gas-filling without hermetic seal (i.e. only "closed" shut-off valve)

PPS with CD-Electrode Structure (≈ 20-25% active cell/pixel fill-factor)

1st Generation Prototype PPS Modified Commercial Panel

Principles of Operation

- Accelerated electrons
 begin *avalanche*
- Large electric field leads to *streamers*
- Streamers lead to
 breakdown roughly
 follows Paschen's law.
- Gas gap becomes conductive
- Voltage drops on quench resistor
- E-field inside the pixel drops
- Discharge terminates

Equivalent Circuit Simulations

- SPICE simulation incorporates the inductances and capacitances calculated with COMSOL
- Electrical pulse is injected into the cell and the output signal is simulated Single cell SPICE model

Electromagnetic Field Model

C2 Each cell is modeled as a capacitor COMSOL model for the electric field inside the E-field in the PDP pixels cell Capacitances and inductances are also calculated 788 5000 5 mm No E-field 0 -50005000 -5 mm E-field is localized

Collimated *β*-Source Simulation

11/7/2013

Design & Operating Parameters

(most of which are currently being investigated)

- Cell Design: fill-factor, gas gap, discharge gap
 - open vs. closed architecture
 - columnar vs. surface discharge
- Electrodes: pitch, width, material
- Cell capacitance
- Operating voltage
- Quench resistance
- Gas mixture & pressure
- Substrate material (e.g. thickness, density)
- Dielectric surfaces

Performance Issues

(most of which are currently being addressed)

- After pulsing & discharge spreading
- Gas hermeticity & decomposition
- Response in magnetic field
- Electrode degradation
- Radiation hardness
- High rate response
- Spatial uniformity
- Spatial response
- Time response
- Efficiency
- Readout
- Cost

Panel Signals (β-source)

Response to β -Source

Vs. applied High Voltage

IBA Proton Beam Test

- Cancer treatment facility (ProCure in Warrenville, IL)
- Beam energy 226 MeV, proton rate > 1 GHz

Proton Beam Results - 1 mm Scan

- 1 mm diameter collimator on the beam axis
- Proton rate on panel ~ 2 MHz (centered over ~ 1 pixel)

Collimated Source Position Scan

¹⁰⁶Ru collimated source

Motorized X-Y table

- Light-tight , RF shielded box
- 1 mm pitch panel
- 20 readout lines
- 1.25 mm wide graphite collimator

Collimated β – Source Position Scan (¹⁰⁶Ru)

Source Moved in 0.1 mm Increments (1 mm pitch panel)

Collimated β – Source Measurement (¹⁰⁶Ru)

CR Muon Measurement Setup

Stability - Response to CR Muons

Uniformity - Response to CR Muons

Timing for Different Gases

(raw signals – not trigger subtracted)

Gas mixtures & pressures working at *higher voltage if faster timing*

CR Muon Arrival Time vs. HV

Ar / 1% CF₄ at 730 Torr (raw signals – not trigger subtracted)

Time Spectrum of CR Muons

Using 65% ⁴He / 35% CF₄ at 730 Torr

Time Spectrum of CR Muons

Using 80% ³He / 20% CF₄ at 730 Torr

PPS Efficiency for CR Muons

(10% CF₄ in Ar, at 740 Torr, 0.38 mm gas gap, 2.5 mm electrode pitch)

11/7/2013

Thermal Neutron Detection

(in collaboration with GE, Reuter-Stokes)

- **Objectives:** Develop alternative to ³He as high efficiency neutron detector with high γ rejection
 - **This Test:** Explore PPS as a general detector structure for converting neutrons using thin gap ³He gas mixture
 - **Gas Fill:** 80% ³**He** + 20% CF₄ at 730 Torr
 - Panel:2.5 mm pitch large panel used for CR muonsInstrumented pixels = 600,Area: 6 in^2
 - **Method:** Irradiate panel with thermal neutrons from various sources high activity (10 mrem/hr) gammas conduct count rates experiment with & w/o neutron mask plates

 $3x10^5 \gamma$ /sec at instrumented region

HV (volts)	γ rate (Hz)	γ efficiency
970	0.09	3.0 x 10 ⁻⁷
1000	1.2	3.7 x 10⁻⁶
1030	7.9	2.5 x 10⁻⁵

Good γ rejection even before any optimizations offered by:

- 1) Thinner substrates
- 2) Lower gas pressure
- 3) Thinner metallization
- 4) Pb free dielectric around pixels

Neutron Efficiency Results

- Geant4 simulation (GE) of the neutron capture rate based on source activity: 0.70 ± 0.14 Hz
- PPS measured rate: **0.67 ± 0.02 Hz**

Approximately 100% of captured neutrons were detected

Microcavity Concept

radial discharge gaps cavity depth → longer path lengths individually quenched cells isolation from neighbors

COMSOL simulation:

Equipotential lines

E-field

Microcavity Prototype (Back Plate)

Sealed Microcavity-PPS

Ongoing Efforts (2013-2014)

- Microcavity-PPS program
 - Final fabrication & initial testing
 - Thin & ultrathin cover plates
- 2D readout
- Demonstrate high cell / pixel efficiency
- Pursue higher resolution panels, faster timing
- Stacked panels for 3D tracking

Summary of 1st Generation Prototypes

PPS sensitive to:

- Highly ionizing particles: betas, protons, neutrons (with good gamma rejection)
- Minimum ionizing particles: muons

Large amplitude (volts) & fast pulses (1 ns rise time)

Timing resolution < 10 ns & *dropping* (e.g. 3 ns)

Spatial resolution < electrode pitch (1 mm) & *dropping*

Operate for months, even 1 year (sealed only by valve)

Operate in high rate environments