

Scintillating Bolometer Crystal Growth and Purification for Neutrinoless Double Beta Decay Experiments

Presented by: Joshua Tower, RMD Inc.

August 8, 2018

Scintillating Bolometer Crystal Growth and Purification for

Neutrinoless Double Beta Decay Experiments

DOE Contract: DE-SC0015200 SBIR Phase II Period of Performance: 4/10/2017 - 4/9/2019 RMD Principal Investigator: Michael Squillante DOE Technical Contact: Michelle D. Shinn

DOE-NP SBIR/STTR Exchange Meeting

August 7-8, 2018 Rockville, Maryland

Outline of the Talk

- Introduction
 - Radiation Monitoring Devices, Inc. (RMD) Research
 - Neutrinoless Double Beta Decay
- Phase I Summary
- Phase II Detailed Progress Report
- Plans for Continuing Work

RMD Basic and Applied Research and Development

Materials Science

Scintillators

Semiconductors

Imaging Screens

<u>Sensors</u>

APDs SSPMs Photosensors

Wide Band Gap Geiger Photodiodes

Flexible ECT Sensor Array

Instruments & Systems

CLYC detectors for RadEye

HiRIS – High Resolution Imaging System

Fire Scout field prototype maintenance tool*

RMD Low-Background Crystal Development for Rare Event Searches

Ultrapure Nal Scintillator for dark matter

SABRE experiment which will use RMD's ultrapure Nal crystals DOE-HEP

Scintillating Bolometers for 0vββ

LiInSe₂

Na₂Mo₂O₇

Superconducting Bolometers for neutrino scattering

Zinc crystal in copper holder with NTD-Ge temperature detector

DOE-HEP

DOE-NP

<u>Process of Neutrinoless Double Beta Decay ($0v\beta\beta$)</u>

- Feynman diagram for neutrinoless double-beta decay through light Majorana neutrino exchange
- Spectrum of electron energies from double-beta decay.
- The red section at the endpoint Q indicates those from neutrinoless double-beta decay.

If $0\nu\beta\beta$ exists, then the neutrino must be a Majorana particle (its own antiparticle)!

Candidate Isotopes for 0vββ Experiments

		end point	%
element	isotope	energy (MeV)	abundance
Са	48	4.271	.187
Nd	150	3.367	5.6
Zr	96	3.35	2.8
Мо	100	3.034	9.7
Se	82	2.995	8.8
Cd	116	2.802	7.5
Те	130	2.527	24.6
Xe	136	2.457	8.9
Ge	76	2.039	7.8

¹⁰⁰Mo half-life = 7.8×10^{18} y ⁸²Se half-life = 0.97×10^{20} y

Requirements for isotope

- 1. Must decay by double beta process.
- 2. Good natural abundance and ability to enrich.
- High endpoint energy (above 2.6 MeV ²³²Th gamma ray).
- 4. Major constituent in a scintillating crystal.

¹⁰⁰Mo has promising properties!

Scintillating Bolometers are needed for better particle discrimination and background reduction in next generation experiments.

SBIR Program Summary

- **Phase I**: Evaluate different crystal compositions for possible use in neutrinoless double beta decay experiments.
 - Samples were tested as scintillating bolometers through our collaborators at MIT*.
 - $Na_2Mo_2O_7$ was selected for further development in Phase II.
- Phase II:
 - Scale-up crystal growth to 2" diameter ($Na_2Mo_2O_7$).
 - Improve radio-purity.
 - Optimize surface preparation methods.
 - Provide sample crystals for cryogenic scintillating bolometer testing.

*RMD has teamed up with MIT (Prof. Lindley Winslow), who is part of the CUORE and CUPID collaborations.

Phase I Crystal Growth and Characterization

Materials Evaluated in Phase I

- ZnMoO₄
 - Difficult to grow
- PbMoO₄
 - Can be grown well, but Pb not desired
- Na₂Mo₂O₇ & Na₂Mo₄O₁₃
 - Most promising!
- LilnSe₂
 - Good properties, but indium not desired
 - Related compound LiGaSe₂ might be considered

Na₂Mo₄O₁₃ Grown in Phase I

Summary:

- Initial small crystal grown by vertical Bridgman

- Good scintillation properties
- Low-T evaluation by MIT
- Promising for high purity

Initial VB-Grown Na₂Mo₄O₁₃

Na₂Mo₄O₁₃ Data from CSNSM in Orsay, France

"Ulysse" pulse-tube cryostat

Various crystals mounted in a tower

First scintillation pulse obtained from $Na_2Mo_4O_{13}$

Background at Earth Surface

Phase II Progress Summary

- Developed synthesis process for Na₂Mo₂O₇
- Obtained and setup Czochralski (CZ) growth system
- Developed process for CZ growth of Na₂Mo₂O₇
 - Crystal orientation and seed fabrication
 - 1" process developed, 2" process underway
- Crystal cutting and polishing
- Basic optical and structural characterization
- Samples fabricated for cryogenic scintillating bolometer testing
- Scintillating bolometer testing was done at CSNSM

Na2Mo2O7 Synthesis Process

- 1. MoO_3 99.9995% + Na_2CO_3 99.997% powders from Alfa Aesar
 - $2 \text{ MoO}_3 + \text{Na}_2\text{CO}_3 \rightarrow \text{Na}_2\text{Mo}_2\text{O}_7 + \text{CO}_2$
- 2. Mix MoO_3 and Na_2CO_3 in a plastic bottle overnight on a roller
- 3. Press the mixture in a Teflon piston jig with a cold isostatic press to form a compact and dense mixture puck
- 4. Place and melt the puck inside a 100ml platinum crucible at 650C
- 5. Repeat steps 1-4 one more time to fill crucible

Puck generated

Puck melted in Pt crucible

Na2Mo2O7 Grown in Phase II

Czochralski growth method used

First growth run made using Pt wire as a seed

Initial crystal was cut into seeds for subsequent growth runs.

Seeded Cz Growth of Na₂Mo₂O₇

As-grown Ingot

Samples cut and polished for evaluation

Powder XRD confirmed composition

XRPD Simulated Pattern of Na2Mo2O7

Colorless Crystal with Excellent Transparency

Good transparency in indicative of high purity

Room temperature emission spectrum of a $Na_2Mo_2O_7$ crystal

Emission is very weak at room T, but increases by many times at low T.

Good Particle Discrimination in Light-vs-Heat Plot

Na₂Mo₂O₇ mounted in cryogenic sample holder with Ge NTD devices.

Na₂Mo₂O₇

- Alpha events come from U and Th decay chains from internal crystal background.
- Alphas are at energy similar to expected 0vββ decay, so discrimination is crucial.
- Muon events will be shielded in underground laboratory.

Pulse Shape Discrimination Possible with Na₂Mo₂O₇

- Based on the initial cryogenic testing, the current level of crystal "bulk" purity is believed to be suitable for 0vββ experiments!
 - Nevertheless, we plan to test zone refining for further purification and use it as needed.
 RMD Zone Refiner

- Further attention will be on Surface Purity
 - Final polishing and cleaning in a radon-free clean environment is crucial.

LilnSe₂ (Phase I)

Emission Intensity vs Temperature

Light vs Heat Plot for LilnSe₂

- Good particle discrimination
- High light yield
- Neutrons detected through ⁶Li reaction

Recent Beta Decay Spectrum of ¹¹⁵In Measured in LiInSe₂

Scintillating Bolometer data measured ~ 20 mK in Ulysse cryostat

- Indium beta decay spectrum is significantly above the background, even on the Earth's surface.
- Indium Half life = 4.4×10¹⁴ years.
- Background measured by LiMoO₄ bolometer.

This is one of the first demonstrations of a precision beta decay measurement using the "source-equals-detector" setup that is the key to many rare event searches.

- Scale-up Na₂Mo₂O₇ crystal size to 2" diameter
 - New heaters and crucibles have been ordered.
- Perform zone refining purification and evaluate results
- Complete the development of clean surface finishing process
- Deliver 1" and 2" diameter samples to MIT for cryogenic testing and purity evaluation

