Refractory Porous Thin Film Targets for Medical Isotope Production

Nuclear Physics SBIR/STTR Exchange Meeting

August 7-8, 2018

Sponsor: Office of Nuclear Physics, DOE Program Officer: Dr. Manouchehr Farkhondeh Phase IIB Grant Number: DE-SC0007572

Small Business

InnoSense LLC 2531 West 237th Street, Suite 127 Torrance, CA 90505

Collaborator

Dr. Jerry N. Nolen, Jr., Physics Division Argonne National Laboratory

Principal Investigator

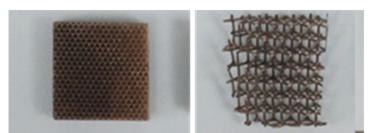
Dr. Uma Sampathkumaran (310) 530-2011 x103 uma.sampathkumaran@innosense.us

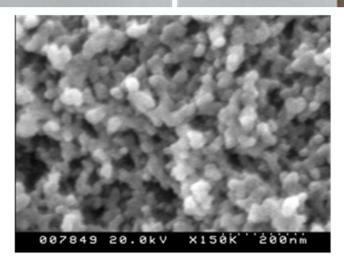
Presented on Aug 8, 2018

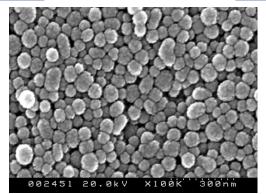
Slide 1

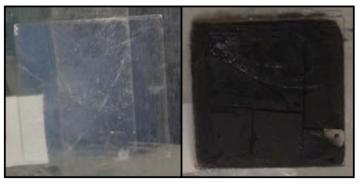
Presentation Overview

- About InnoSense LLC
- Commercialization Status
- Motivation
- Relevance to Nuclear Physics Programs
- Work in Progress
 - Refractory Oxide Porous Catchers
 - Thin Film Porous Bismuth Oxide Targets
- Summary
- Acknowledgments


About InnoSense LLC

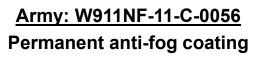

- Established in 2002 by private investment, R&D operations in 2004, housed in a 9,000 square feet laboratory facility located in Torrance, California. Core Capabilities – Nanotechnology, Chemical and BioSensing
 - Added 1400 sq. ft of space for testing and production capabilities chemical sensors division
 - Planned expansion (~3000 sq. ft) for dedicated biotechnology/bioassay development
- Seven "wet" chemical facilities equipped with fume hoods, a clean room, a spectroscopy facility, optics and chemical and biosensor testing laboratories, and two machine shops.
- Growth Phase currently 28 employees, expanding to 30 soon
 - 7 PhD, 7 MS and 2 MBA degree holders.
 - Dedicated business development team added in 2017.
 - Negotiating a large contract with MDA for production of 24/7 monitoring leak detectors
 - Gearing to spin-off divisions
 - Two Army funded efforts in preproduction/licensing activities


Commercialization – Building from ONP Funding


Silica aerogel coatings on metal lattices – \$8,500 July 2015

Porous Scaffolds for Refractory Solar Selective Coatings – SuNLaMP \$200 K (2016-2017)

Prior DOE ONP funding enabled us to develop the technology for porous monoliths and expand the application base for these materials



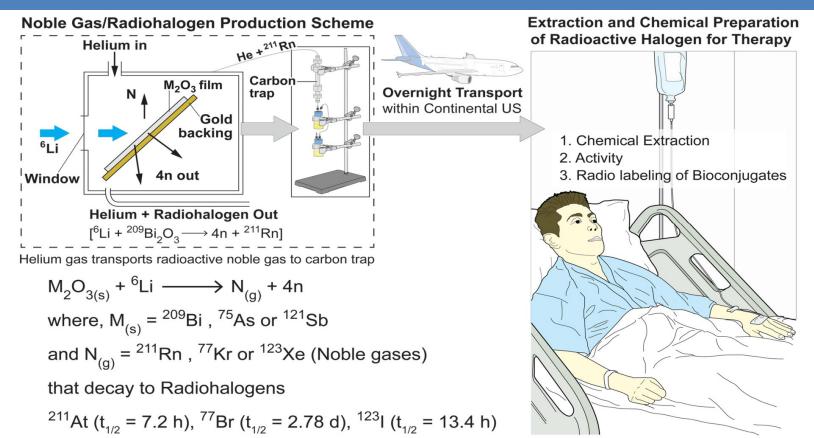
Company Commercialization Status

<u>Army: W15QKN-09-C-0153</u> Passive Temperature Dosimeter

- Ongoing Phase III Funding ~\$1M
- Correlation Testing completed at Yuma Proving Grounds 2018
- Expanding customers in the Army to ramp up production

PC lens and PU visor

- DOD DTRA RIF award 2015
- Nanomaterials in coating
- Negotiations with DOD and Commercial vendor for licensing


MDA: HQ0147-14-C-7012 Hypergolic Leak Detector for THAAD

- Drop-in Replacement Leak
 Detector for MDA THAAD missiles
- \$200K Production order from Lockheed
- New contract under negotiation.

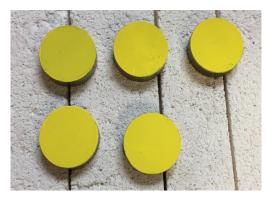
Medical Isotope Production Target Development (must be stable with beam power)

- Efficient production and release of radioactive noble gas precursors at low and room temperature – Higher production rates of ²¹¹At, ⁷⁷Br and ¹²³I
- ⁶Li induced reaction for parent/daughter production system, concept for a dedicated linac or cyclotron for radio-halogen production – Overnight delivery to users from single national facility.

InnoSense LLC

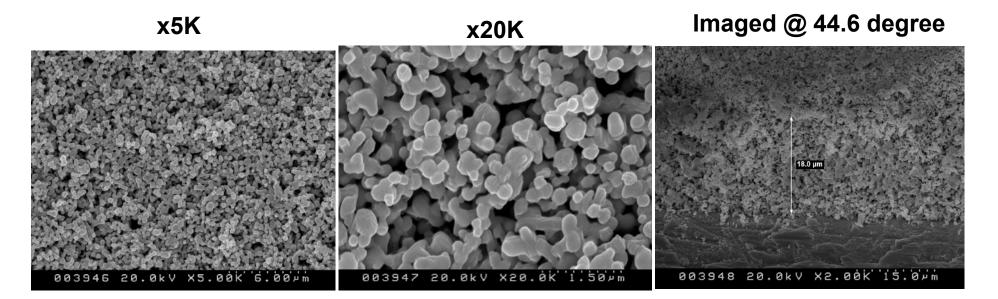
Catchers/Targets Being Studied at ISL and ANL

Refractory Catcher/Target	Production beam	Collected Isotopes
Tungsten-coated SiO ₂ Aerogel	¹⁸ O (typical)	⁸⁻¹¹ Li ^{6,8} He
Carbon Aerogel	¹⁶ O, ⁴⁸ Ca, etc.	$^{12}C^{14}O_{-}^{12}C^{24}O_{-}^{12}C^{24}O_{2}$
Yttria-Stabilized Zirconia (YSZ) and Hafnia (HfO ₂) Porous Monolith	¹² C, ⁴⁸ Ca, etc.	${}^{9}C^{16}O_{2}^{-22}C^{16}O_{9}C^{16}O_{2}^{-22}C^{16}O_{2}$
Sintering-inhibited Disks of Tungsten, Tungsten + ALD-Hafnia and Tungsten Carbide	¹⁸ O, ⁴⁸ Ca, etc.	"All of the above"
Nanoporous CaO Monolith	⁴⁰ Ca	³¹⁻³⁵ Ar
Nanoporous Metal Oxide (M ₂ O ₃) Thin Films* (M = ²⁰⁹ Bi, ⁷⁵ As, ¹²¹ Ab)	⁴ He, ^{6,7} Li	²¹¹ Rn/ ²¹¹ At, ⁷⁷ Kr/ ⁷⁷ Br, ¹²³ Xe/ ¹²³ I t _½ [14 h/7.4 h]; [1.24 h/2.78 d]; [2.08 h/13.4 h]


* Thin film targetry for medical isotope production

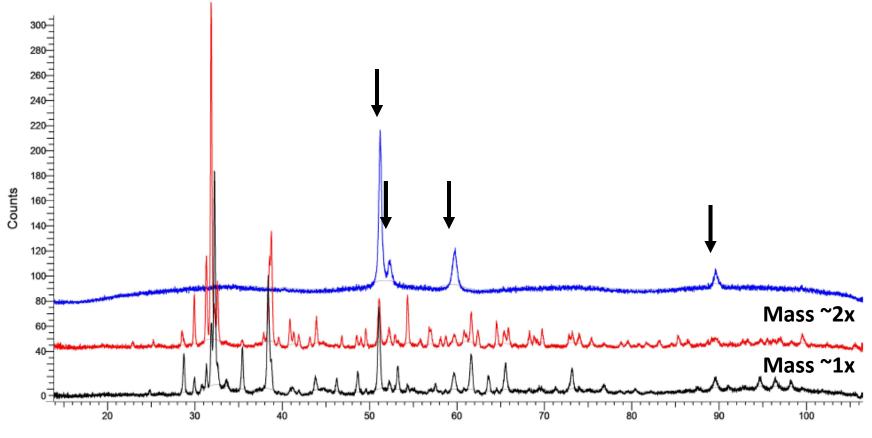
Refining Bismuth Oxide Thin Film Processing

As-Deposited



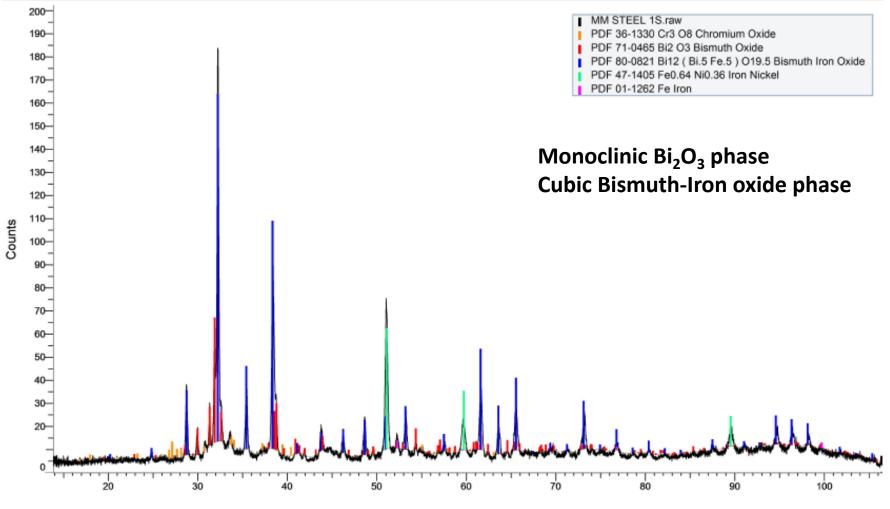
Fired @600 °C; 3x

Nanoporous Bismuth Oxide Thin Films

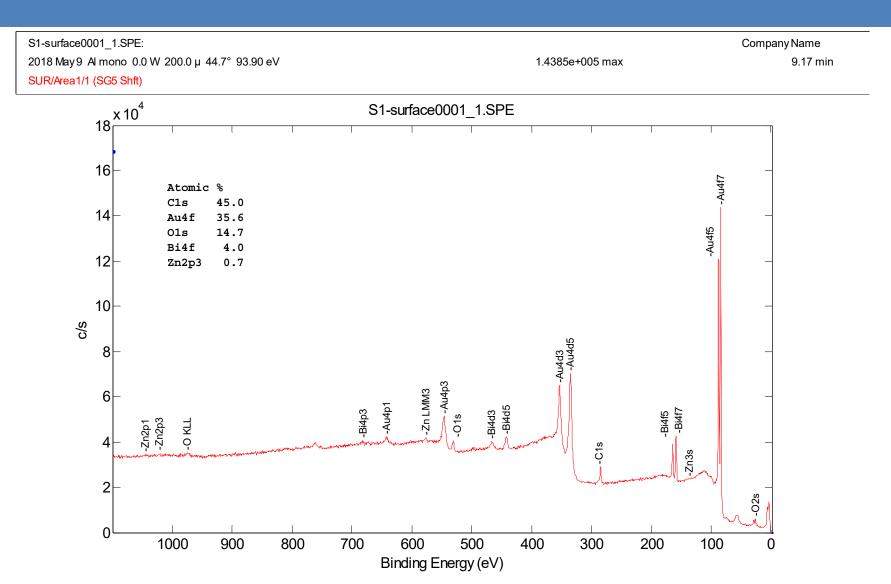


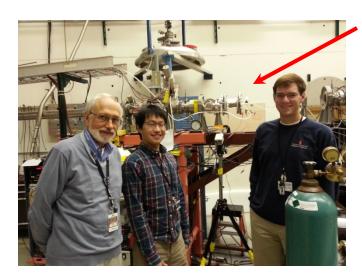
- Processing developed for contiguous nanoporous bismuth oxide films on stainless steel 303 coupons (0.5" thick, 7/8" diameter)
- Film thickness ranged from 9-15 mg/cm²
- Films remain adhered after 3x in vacuum heating to 600 °C
 - Some mass loss noted investigating this
- Tested at ATLAS in May 2018 with energetic ⁶Li beams for formation and release of radiohalogen Radon-211 to decay to Astatine-211.

X-Ray Powder Diffraction of Bismuth Oxide Films on 303SS Substrates

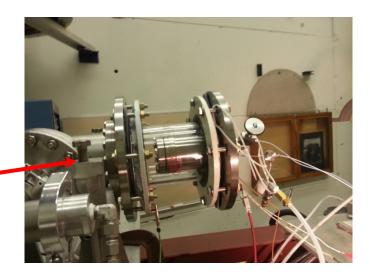

MM STEEL 1S.raw MM STEEL 2S.raw STEEL BLANK 303.raw

2Theta (TwoTheta) WL=1.78886


Indexed to JCPDS Files

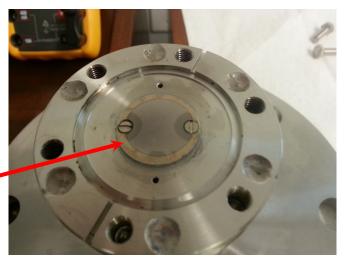

2Theta (TwoTheta) WL=1.78886

X-ray Photoelectron Spectroscopy of Bi₂O₃



Initial Tests at ATLAS with a Bismuth Metal Target

Health physicist, Post-doc, Undergraduate


Target/ helium _____ plumbing/ heater assembly

Havar window

32 mg/cm² Bi on Ni

Release and capture efficiency ~1% at ~200 °C

First Test at ATLAS with Bismuth Oxide Target

Sample 3 = 15.08 mg/cm2 area density


Sample chamber at ATLAS beam line

Test Setup at ATLAS

Helium circulation pump and cold trap

Cold trap and Ge gamma detector

Counts gammas from 211Rn transferred to charcoal

Off-line counting of long lived ²⁰⁷Bi

50% of ²¹¹Rn (14 hour) decays to ²⁰⁷Bi (32 year), so counting the ²⁰⁷Bi is useful for tracking the final location of the ²¹¹Rn/²¹¹At

Counting the ²⁰⁷Bi gammas from the cold charcoal trap (1% transferred at 65 °C)

Counting the ^{207}Bi gammas from the Bi_2O_3 target. Results scale to 64 μCi of ^{211}Rn produced @ 30 puA current, 10 h.

Summary

- Refractory nanoporous bismuth oxide thin films developed on 303 stainless steel substrates
- Retain open porosity and remain adhered through thermal cycling – robust, ceramic-like coating on backing
- Tested 15 mg/cm² target on-line at ATLAS to produce ²¹¹Rn
- Next steps (at Argonne)
 - Improve sample heater to reach 600 °C to increase release
 - Add sample chamber neutron shielding to permit higher beam currents (ANL funded) and on-line counting of yields
 - Quantitatively determine ions/cm² limit of target lifetime
- Ultimate goal is to use large area Bi₂O₃ targets for production and distribution of ²¹¹Rn/²¹¹At radioisotope generator for cancer therapy.

Acknowledgments

DOE and the Office of Nuclear Physics for grant DE-SC0007252

Program Officer(s) – Dr. Manouchehr Farkhondeh Dr. Michelle Shinn

