Thermo-Mechanically Stable Tungsten Powders as Solid Catchers for the Fast Release of Stopped Rare Isotopes

Nuclear Physics SBIR/STTR Exchange Meeting

August 7-8, 2018

Sponsor: Office of Nuclear Physics, DOE Program Officer: Dr. Manouchehr Farkhondeh Phase II Grant Number: DE-SC0011346

Small Business

InnoSense LLC 2531 West 237th Street, Suite 127 Torrance, CA 90505

Collaborator

Dr. Jerry N. Nolen, Jr., Physics Division Argonne National Laboratory

Principal Investigator

Dr. Uma Sampathkumaran (310) 530-2011 x103 uma.sampathkumaran@innosense.us

Presented on Aug 8, 2018

Presentation Overview

- About InnoSense LLC
- Commercialization Status
- Motivation
- Relevance to Nuclear Physics Programs
- Work Completed
- Summary
- Acknowledgments

About InnoSense LLC

- Established in 2002 by private investment, R&D operations in 2004, housed in a 9,000 square feet laboratory facility located in Torrance, California. Core strengths – Nanotechnology, Chemical and Biosensing
 - Added 1400 sq. ft of space for testing and production capabilities chemical sensors division
 - Planned expansion (~3000 sq. ft) for dedicated biotechnology/bioassay development
- Seven "wet" chemical facilities equipped with fume hoods, a clean room, a spectroscopy facility, BSL 2 hood, optical, chemical and biosensor testing laboratories, and two machine shops.
- Growth Phase currently 28 employees, expanding to 30 soon
 - 7 PhD, 7 MS and 2 MBA degree holders; 4 issued patents, several pending
 - Dedicated business development team added in 2017.
 - Negotiating a large contract with MDA for production of 24/7 monitoring leak detectors
 - Gearing to spin-off divisions
 - Two Army funded efforts in preproduction/licensing activities

Commercialization – Building from ONP Funding

Silica aerogel coatings on metal lattices – \$8,500 July 2015

Porous Scaffolds for Refractory Solar Selective Coatings – SuNLaMP \$200 K (2016-2017)

Prior DOE ONP funding enabled us to develop the technology for porous monoliths and expand the application base for these materials

Company Commercialization Status

Army: W15QKN-09-C-0153 Passive Temperature Dosimeter

- Ongoing Phase III Funding ~\$1M
- Correlation Testing completed at Yuma Proving Grounds 2018
- Expanding customers in the Army to ramp up production

PC lens and PU visor

- DOD DTRA RIF award 2015
- Nanomaterials in coating
- Negotiations with Company who supplies DOD and other markets for licensing

MDA: HQ0147-14-C-7012 Hypergolic Leak Detector for THAAD

- Drop-in replacement Leak Detector for MDA THAAD missiles
- \$200K production order from Lockheed in 2017-2018
- New contract under negotiation

Refractory Hot Catchers for Rare Isotopes (no primary beam power)

- Porous solid catchers with thicknesses in the range of ~20 g/cm² will complement gas catchers which are the FRIB base-line concept for stopping energetic rare isotopes and delivering them for stopped beam research or for reacceleration.
- Tungsten catcher to stop and release ¹¹Li and ^{6,8}He isotopes

Catchers/Targets Being Studied at ISL and ANL

Refractory Catcher/Target	Production beam	Collected Isotopes
Tungsten-coated SiO ₂ Aerogel	¹⁸ O (typical)	⁸⁻¹¹ Li ^{6,8} He
Carbon Aerogel	¹⁶ O, ⁴⁸ Ca, etc.	$^{12}C^{14}O_{-}^{12}C^{24}O_{-}^{12}C^{24}O_{2}$
Yttria-Stabilized Zirconia (YSZ) and Hafnia (HfO ₂) Porous Monolith	¹² C, ⁴⁸ Ca, etc.	⁹ C ¹⁶ O_ ²² C ¹⁶ O ⁹ C ¹⁶ O ₂ - ²² C ¹⁶ O ₂
Sintering-inhibited Disks of Tungsten, Tungsten + ALD- Hafnia and Tungsten Carbide	¹⁸ O, ⁴⁸ Ca, etc.	"All of the above"
Nanoporous CaO Monolith	⁴⁰ Ca	³¹⁻³⁵ Ar
Nanoporous Metal Oxide (M_2O_3) Thin Films* (M = ²⁰⁹ Bi, ⁷⁵ As, ¹²¹ Ab)	⁴ He, ^{6,7} Li	²¹¹ Rn/ ²¹¹ At, ⁷⁷ Kr/ ⁷⁷ Br, ¹²³ Xe/ ¹²³ I t _½ [14 h/7.4 h]; [1.24 h/2.78 d]; [2.08 h/13.4 h]

* Thin film targetry for medical isotope production

Catcher Thickness Considerations

- Desired areal density (η) or thickness for efficient isotope capture can range from 3–20 g/cm² depending on the material used.
- Areal density can be related to the apparent volumetric density as:
 - η =ρL
- This value is used to screen catcher disks after the 1000–1500 °C vacuum heat treatment

Must be thick to stop high energy radioactive beams at FRIB

Refine Processing of Candidate Powders

- 0.6–1 µm Tungsten
- 150–300 nm Tungsten Carbide
 - Porogens open pores in disks
 - Diameter ~12.6 mm
 - Thickness ~1.5 mm
 - Stacked for x g/cm² (catcher thickness)

Before Firing

600 °C/4h; 1400 ° C/2h in Ar 1000 °C/1 h in 10⁻⁵ HPa

- Change in disk dimensions <3% post processing
- Mass change ~ 3-4%

Open Porosity Retained Post Heating in Argon and Vacuum

Tungsten (W)

Tungsten Carbide (WC)

004783 20.0kV X20.0K 1.50 m

Avg. Pore Dia.: ~1.25 μm

04791 20.0kV X20.0k 1.50 m

~500 nm

- Minimal grain growth and sintering achieved
- Open porosity retained
- Apparent density (g/cm³)
 - W = 7.71±0.22 (n=15)
 - WC = 4.51±0.16 (n=20)
- Apparent Porosity
 - W = 60%
 - WC = 71%
- Intrusion Porosity
 - W~60%
 - WC ~71%

Setup for solid stopper tests at NSCL

- First on-line test of the porous solid tungsten WC catchers at NSCL using a very short-lived isotope (⁸He, 119 msec)
 - Collaboration of Argonne and NSCL scientists in May, 2018

Setup for solid stopper tests at NSCL

Sample Chamber and Count Rate in Nal Detector

"Effective" half-life of ⁸He decreased with heater power up to present limit of 400 W, ~500 °C. Release estimate ~20% - very good for a noble gas at this low temperature

Summary

- Processing methods developed for refractory nanoporous tungsten and tungsten carbide powders for use as solid catchers
 - 12.5 mm diameter, 1.5 mm thick disks stacked for 1 cm thick catcher
 - Apparent density
 - Tungsten ~7.7 g/cm³
 - Tungsten carbide ~4.5 g/cm³
 - - Tungsten ~60%
 - Tungsten carbide ~71% (tested on-line at MSU/NSCL)
- Successful on-line test conducted at NSCL in May 2018
 - ~20% release of very short-lived ⁸He (119-msec half-life) already at relatively low temperature, ~500 °C

The participants in this test at the NSCL were: Jeongseog Song, Ravi Gampa, Jim Specht, John Greene, Matt Gott, and Jerry Nolen from Argonne, and Mauricio Portillo, Antonio Villari, Mathias Steiner, and Tom Ginter from MSU/NSCL.

Future Plans

- Initial results are promising
- Further testing is dependent on FRIB interest and resources being made available
 - Variety of materials have been processed into disks and waiting to be tested (backlog from multiple projects)
 - Tungsten
 - Tungsten Carbide
 - ALD-Hafnia coated Tungsten
 - Carbon
 - ALD-Tungsten Coated Silica Aerogels
 - Carbon Aerogels
 - Feedback, required to refine the materials processing
 - Potential users RIBF at RIKEN; RISP in South Korea; GANIL in France

Acknowledgments

DOE and the Office of Nuclear Physics grant DE-SC0011346

Program Officer(s) – Dr. Manouchehr Farkhondeh Dr. Michelle Shin

Dr. Georg Bollen for technical discussions and support to evaluate the catcher materials at FRIB

