

Specialists In

O RARE EARTH MAGNET

MAGNET DESIGN
MAGNET SYSTEMS

Design and Manufacture of Tunable Permanent Magnet Based Quadrupole for Next Generation Electron-Ion Colliders

Fast-Track Award Number: DE-SC0015230 Program Managers: Manouchehr Farkhondeh & Michelle Shinn

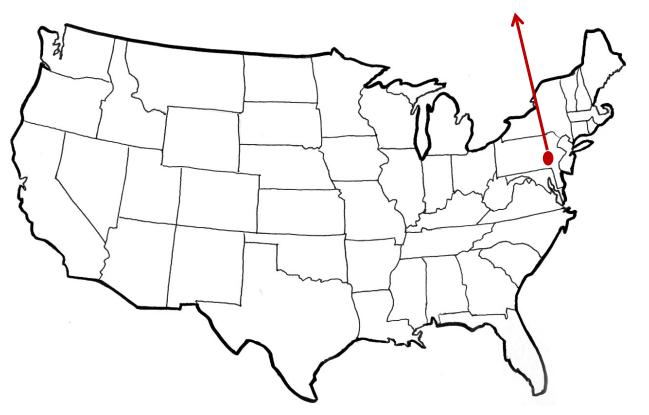
2018 DOE SBIR/STTR Exchange Meeting August 7, 2018

EEC Team:

Heeju Choi, Ph.D., Principal Investigator, 717-459-1049, hchoi@electronenergy.com Melania Jasinski, Ph.D., Project Management, 717-459-1067, melania@electronenergy.com Scott Murr, Business Development, 717-459-1001, smurr@electronenergy.com Steven Hawthorne (Director of Manufacturing Engineering), Lori Haley (Manufacturing Engineer), Daniel Patches (Process Improvement Engineer)

Outline

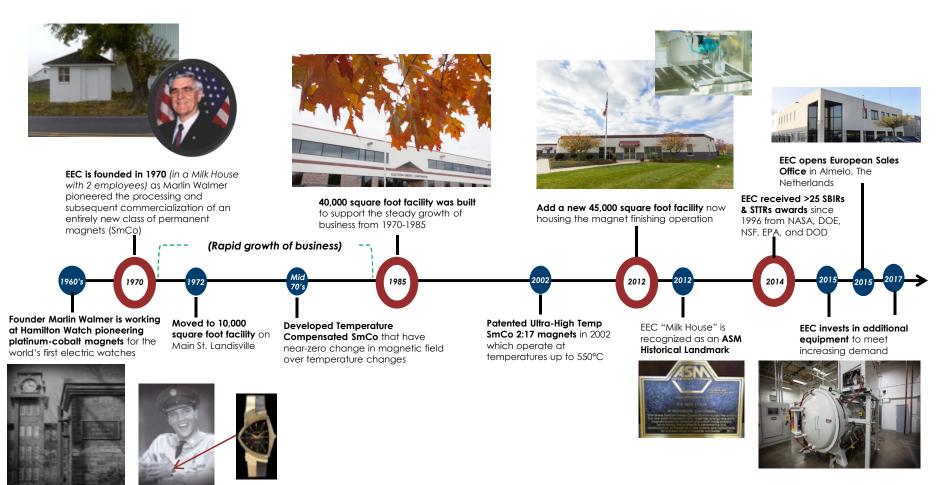
- 1. EEC Introduction
- 2. Project Description
- 3. Achievements
- 4. Schedule & Deliverables



1. EEC Introduction

World's First Rare Earth Permanent Magnet Producer

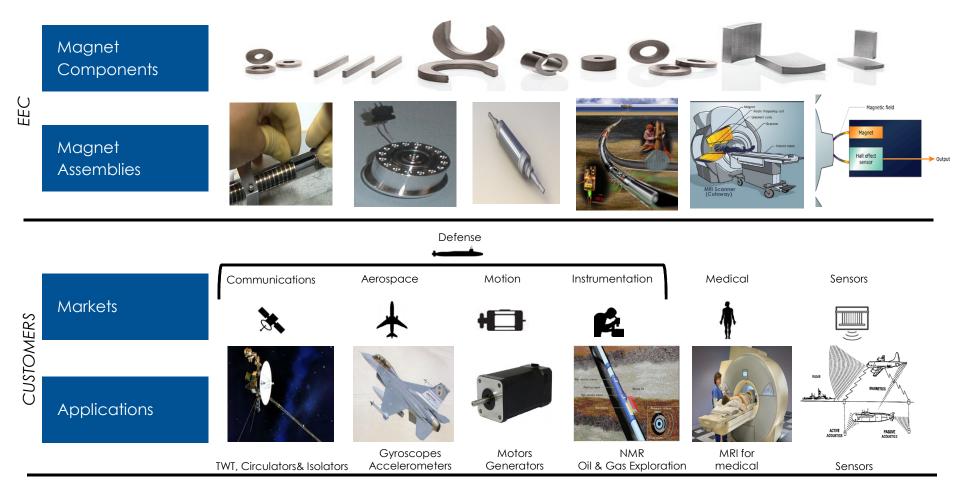
Lancaster, PA


EEC is the only vertically integrated SmCo magnet producer in the US.

The EEC story

New plant layout to optimize floorplan and Equipment

Specialists in Rare Earth Magnets and Magnet Systems

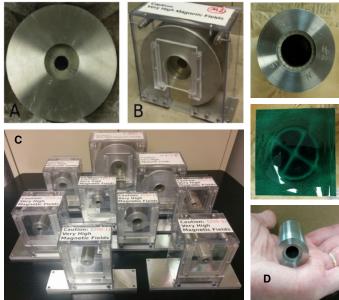

Hamilton Watch's 1st electric watch named the

"Ventura"...made famous by Elvis Presley.

EEC Applications

Product Platforms

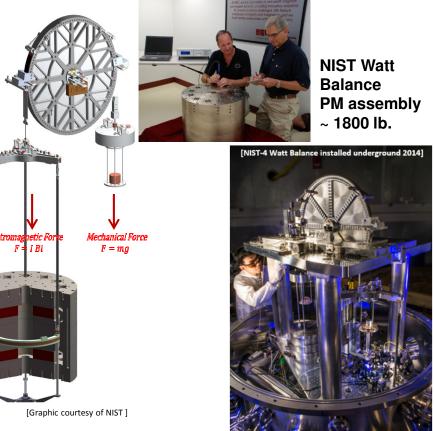
Samarium Cobalt ■ Neodymium-Iron-Boron ■ Alnico ■ Ceramic ■ Assemblies



EEC Applications

Quadrupole Magnet for Proton Therapy

Proton radiosurgery to treat brain tumor metastasis. □ Magnetic focusing of the proton beam could be used to reduce this particle scattering leading to improved dose distributions, dose rate and more efficient dose delivery.



Focusing magnets consist of 24 segments of Sm₂Co₁₇ positioned into Halbach cylinders. [H. Choi, et al., 'Design and Development of Permanent Magnet Based Quadrupole for Proton Radiosurgery Applications', 24th Int. Workshop on Rare Earth and Future Permanent Magnets and Their Applications (REPM 2016), Darmstadt, Germany.

Permanent Magnet Assembly for Watt Balance

□ Watt Balance is an electromechanical weight measuring instrument to define a kilogram mass by comparing electrical power to mechanical power.

cessfully replaced the electromagnet with permanent magnet systems with 100 ppm field uniformity at 0.5T

6

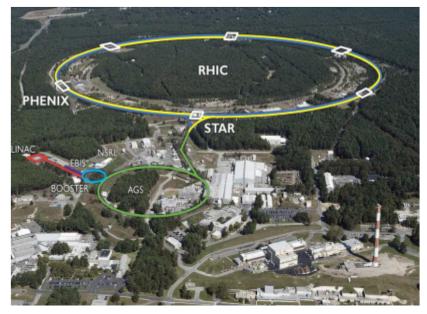
2. Project Description

Project Background

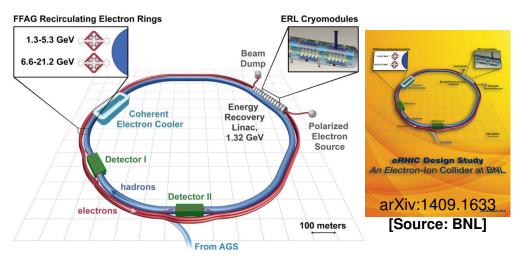
 This project is for the design and construction of a prototype quadrupole permanent magnet for the magnet transport lattice for an electron-ion collider.

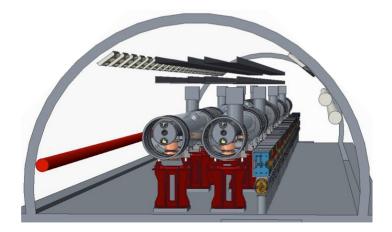
The Nuclear Science of eRHIC at BNL

- Construction of eRHIC at BNL will have a major impact on the Electron Ion Collider (EIC) physics program, advancing the long-term vision for better understanding and new discoveries in Quantum Chromodynamics (QCD) theory.
- The use of permanent magnet based technology will significantly reduce the cost and maintenance problems of particle accelerators.


Other Applications of Accelerator Science, using Permanent Magnets

 Therapy of advanced tumors, the production of radiopharmaceuticals and medical isotopes through ion implantation, non-invasive security inspections of closed cargo containers, etc.


2. Project Description


Electron Relativistic Heavy Ion Collider Configuration at BNL

RHIC, BNL

□ Circumference ~ 3.8 km (~ 2.3 mi.)

Future Electron Ion Collider Development

Goals

- 1. Manufacture prototype quadrupole assembly using permanent magnets.
- 2. Projects of interest:
 - eRHIC Electron Ion Collider in the present RHIC tunnel.
 - Proton therapy for medical treatment.

Why Permanent Magnets?

- 1. No power consumption results in significant construction, operation and maintenance cost reduction.
- 2. Occupy small volume as compared to the electromagnets producing the same useful magnetic field.

Objectives

- 1. Conduct design, construction, and testing of a tunable focusing quadrupole magnet prototype with high performance at low cost using robust industrial technologies.
- Achieve specifications (Field gradients 34.42 T/m, Field gradient error ≤ 0.1%, Good field region R13.4+2mm)

3. Achievements

Task 1: Magnet Design Finalization - Completed (presented @ 2017 Meeting)

Task 2: 1st Magnet Prototyping - Completed in 2017~2018

Task 3: 1st Magnet Measurement and Testing – Completed in 2018

- 3.1. Measure magnetic field gradient using 2D / 3D Hall probe on XYZ station.
- 3.2. Check mechanical alignment using FARO laser tracker.
- 3.3. Check field harmonics using harmonic coil at BNL.
- 3.4. Conduct magnetic field correction with built-in adjusting features in-situ at BNL.

Task 4: 2nd Magnet Design and Development – Q7~Q8 Future Work

4.1. Refine the 2nd magnet design based on the 1st prototype results.

4.2. Produce the 2nd magnet assembly.

Task 5: 2nd Magnet Field Testing and Delivery – Q8 Future Work

- 5.1. Verify magnetic field performance and make final adjustment.
- 5.2. Deliver to BNL for beam performance evaluation.

Modular Magnet Configuration

300-mm Long Magnet Assembly with Adjusting Mechanism

Section removed Company proprietary

 FEA demonstrated that all targeted specifications were achieved: field gradient 34.42 T/m, field gradient error ≤ 0.1%, good field harmonics.

Magnetic Design

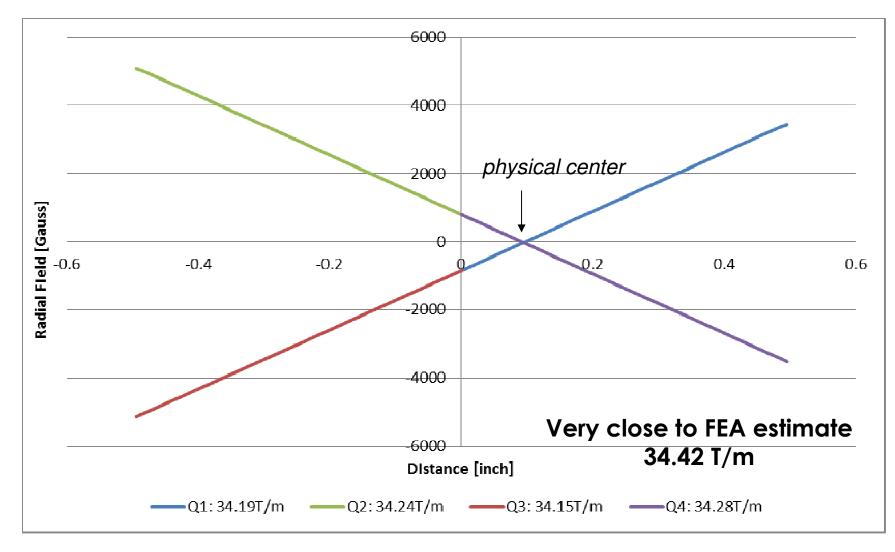
3D Nonlinear FEA Field Contour Map of 300-mm Long Magnet Assembly

Modular Magnet Test

100-mm Long, 12 Modular Magnets Uniformity Test

Quadrupole Magnet Assembly

300-mm Long Quadrupole Magnet Built Successfully at EEC



Field Gradient Test Setup

Field Gradient Test Results

Field Gradient Data of As-is Magnet without Adjustment

Field Harmonics Test Setup

Field Harmonics of 1st magnet was tested using harmonic coil

Field Harmonics Test Results

Field Harmonics Test Results

Non-Symmetry Effects

Section removed

4. Schedule & Deliverables

Task	Milestone Description	%of time	Year 1	Year 2
1	HER magnet design finalization	10		
2	HER 1 st magnet prototyping	30		
3	HER 1 st magnet testing	15		
4	HER 2 nd magnet fine tuning and production	30		
5	HER 2 nd magnet testing and delivery	10		
6	Report	5		

Future Works

- 1. 2nd Magnet Production Fabricate the 2nd quadrupole magnet based on the 1st magnet. (Completion Date: 10/31/18).
- 2. 2nd Magnet Test Conduct the 2nd magnet field harmonics test.

(Completion Date: 11/16/18).

