NP Low Energy Facilities and the SBIR/STTR Program

Georg Bollen

Experimental Systems Division Director Facility for Rare Isotope Beams Michigan State University

DOE NP SBIR/STTR Exchange Meeting, August 7-8, 2018

Outline

- Context
- Science
- Major Facilities
- Advanced Instrumentation

Acknowledgment

• Materials provided by G. Savard (ANL), H. Crawford (LBNL), and others

Low Energy Nuclear Physics

- Refers to the energy scale of the science
 - Of order few MeV (nuclear binding scale)
- Encompasses the physics governing nuclear decays and how they combine to create elements.
- It is where our field most directly impacts and touches our lives (energy, medicine, security)
- Provides a unique way to study fundamental properties of our universe (e.g. neutrinos)

U.S. Department of Energy Office of Science Michigan State University

Low Energy Nuclear Physics Rare Isotope Beam Facilities Worldwide

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

U.S. Department of Energy Office of Scienc Michigan State University

Low Energy Nuclear Physics Facilities

Low Energy Nuclear Physics Facilities

- Other DOE facilities (local use)
 - LBNL 88-Inch Cyclotron

(http://cyclotron.lbl.gov)

»Basic and applied research with stable beams

• Texas A&M Cyclotron Institute (http://cyclotron.tamu.edu)

» Nuclear physics research with stable and radioactive re-accelerated beams

• Triangle-Universities Nuclear Laboratory (TUNL)

(http://www.tunl.duke.edu)

- » High Intensity Gamma Source (HIGS)
- » Laboratory for Experimental Nuclear Astrophysics
- » Tandem Van de Graaff accelerator

ATLAS/CARIBU Facility at Argonne National Laboratory

- Stable beams at medium intensity and energy up to 10-20 MeV/u
- In-flight radioactive beams
 - light beams, no chemical limitations, close to stability, low intensity, good beam properties
- CARIBU beams
 - heavy n-rich from Cf fission, no chemical limitations, low intensity, ATLAS beam quality, energies up to 12-15 MeV/u
- State-of-the-art instrumentation for Coulomb barrier and low-energy experiments
- About 400 users per year

Fragment

Mass Analyzer

ATLAS/CARIBU Facility at ANL

ATLAS Suite of Experimental Equipment

G. Bollen, SBIR/STTR Exchange Meeting, August 20189

FRIB - Facility for Rare Isotope Beams World-leading Next-generation Rare Isotope Beam Facility

- Rare isotope production via in-flight technique with primary beams up to 400 kW, 200 MeV/u uranium
- Fast, stopped and reaccelerated beam capability
- Upgrade options
 - 400 MeV/u for uranium
 - ISOL production multi-user capability

FRIB project start 6/2009 Civil construction started 3/2014 Technical construction started 10/2014 Managed to early completion FY 2021 CD-4 (project completion) 6/2022

Total project cost \$730 million

NSCL enables pre-FRIB science

FRIB Beams Will Enable New Discoveries

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

G. Bollen, SBIR/STTR Exchange Meeting, August 2018, Slide 11

FRIB – Four Science Themes

Properties of nuclei

- Develop a predictive model of nuclei and their interactions
- Many-body quantum problem: intellectual overlap to mesoscopic science, quantum dots, atomic clusters, etc.

Astrophysical processes

- Origin of the elements in the cosmos
- Explosive environments: novae, supernovae, X-ray bursts ...
- Properties of neutron stars

Tests of fundamental symmetries Structure

• Effects of symmetry violations are amplified in certain nuclei

Societal applications and benefits

• Bio-medicine, energy, material sciences, national security

Facility for Rare Isotope Beams

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

G. Bollen, SBIR/STTR Exchange Meeting, August 2018, Slide 13

Civil Construction Complete, Installation Advanced, First Beams Accelerated

FRIB Accelerator Systems Superconducting RF Driver Linac

- Accelerate ion species up to ²³⁸U with energies of no less than 200 MeV/u
- Provide beam power up to 400kW
- Energy upgrade to 400 MeV/u for uranium by filling vacant slots with 12 SRF cryomodules

Michigan State University

 MSU has funded β=0.65 cavity prototype development

G. Bollen, SBIR/STTR Exchange Meeting, August 2018, Slide 15

Front End and Cryomodules in FRIB Tunnel Beam Commissioning in Parallel with Accelerator Installation

- Front-end of accelerator commissioned
 - > 40 μ A ⁴⁰Ar⁹⁺ and > 25 μ A ⁸⁶Kr¹⁷⁺ beams accelerated through RFQ, exceeding key performance parameters
- >50% of cryomodules installed

SRF Cryomodule 1 – 3 Beam Commissioned Met Key Performance Parameters in 2 Days upon Authorization

Diagnostics station containing multiple instrumentation devices

BPMs Energy and Velocity Estimation

Time of flight measurement using beam position monitors

July 10, 2018, Ar⁹⁺ beam accelerated by cryomodules 1 – 3 to 2 MeV/u

FRIB Rare Isotope Production Facility Equipment Installation Underway

400 kW beam from linac

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

- Support areas, 3 subterranean levels
 - Remote handling gallery and control room
 - Non-conventional utilities
 - Waste handling

FRIB Rare Isotope Production Facilities Fragment Separator

- Three stage magnetic fragment separator
 - High acceptance, high resolution to maximize science
 - Provisions for isotope harvesting incorporated in the design
- Challenges
 - High power densities
 - High radiation

```
Multi-slice rotating
graphite target
```


Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

Michigan State University

FRIB Rare Isotope Production Facilities Fragment Separator

- Target facility fragment separator vessels installed
 - Preparing for magnet installation
- High-power target module assembly complete
- High-power beam dump testing and fabrication underway

High-power target beam dump

High-power target module

Vacuum vessels accommodate separator front end with target and beam dump

Leveraging FRIB Capabilities Isotope Harvesting for Broad Benefit

- Many rare isotopes are produced but only one isotope delivered to single user
 - Often 1000 other isotopes are produced that could be harvested and used for experiments or applications
- FRIB has provisions for isotope harvesting incorporated in the design
 - NCU water-cooling and off-gas system prepared for harvesting upgrade

- Challenging chemical separation
- 2015 Long Range Plan for the NP-DOE Isotope Program recognizes FRIB importance and recommends investment in infrastructure for isotope harvesting at FRIB
- Whitepaper on Isotope Harvesting prepared

Fast, Stopped, and Reaccelerated Beam Experimental Areas and Equipment

Experimental Areas, Experimental Equipment

Coupled Cyclotron Facility O feet (CF) with A1900 O meters Separator Very Cyclotron Facility Planted High-Rigidity Very Cyclotron Separator Separator (HRS) Separator Separator

Stopped Beams

Reaccelerated Beams

NSCL enables pre-FRIB science while FRIB construction is underway

Reaccelerated Beams at NSCL and FRIB with ReA Facility

First rare isotope beam experiment with ReA3 in 2013 10 PAC approved rare isotope beam experiments since then

EBIT/S charge breeder Superconducting RF linac ReA3 – 3 MeV/u for ²³⁸U, ReA6 – 6 MeV/u for ²³⁸U (under construction) expandable to >12 MeV/u for ²³⁸U

Advanced Instrumentation for Low Energy Nuclear Physics

- State-of-the art instrumentation is required to maximize science opportunities with rare isotope beams
 - Detectors
 - » High efficiency, high resolution
 - Spectrometers
 - » Large acceptance, high rigidity
 - Ions and atom traps, lasers
 » High-precision experiments
 - Control systems and data acquisitions
- High-power facilities like FRIB have challenges that provide basis for needed developments – higher beam rates need to be met with high performance instrumentation
 - High beam rates (event rates)
 - Radiation damage mitigation
 - High-power density mitigation

Instrumentation for Low Energy Nuclear Physics: GRETINA and GRETA

- GRETINA is one of the most advanced gamma-ray detector array for nuclear science - uses highly segmented detectors to track and reconstruct gamma-rays
 - GRETINA is the first phase of the larger Gamma Ray Energy Tracking Array (GRETA).
- GRETA will be the most advanced gamma-ray detector array for nuclear science
 - GRETA will benefit from High Rigidity Spectrometer (HRS) at FRIB
 - Design study funded by DOE-NP underway
 - HRS building addition underway at MSU

Advanced Instrumentation for Low Energy Nuclear Physics: GRETA

- GRETA will be the most advanced gammaray detector array for nuclear science
 - Uses highly segmented detectors to track and reconstruct γ-rays
 - The GRETA project will add 18 detector modules and new electronics, computing and mechanical systems to instrument the full array
 - The completed array will cover ~ 80% of the full solid angle, and be key in the physics programs at ATLAS and FRIB with fast and reaccelerated beams
- GRETA will benefit from High Rigidity Spectrometer (HRS) at FRIB
 - Design study funded by DOE-NP underway
 - HRS building addition underway at MSU

Advanced Instrumentation for Low Energy Nuclear Physics: Example SECAR

- SECAR (Separator for Capture Reactions) will enable use of FRIB's unique low energy RIB production capabilities to directly measure
 - astrophysical reaction rates
 - DOE-SC/NSF project, multiinstitutional collaboration
 - Construction underway
- Extreme Stars
 - Thorne Zytkov objects?
 - Massive first stars
- Accreting compact objects
 - X-ray bursts
 - Novae
- Supernovae
 - np-process, p-process
 - Explosive burning

Low Energy NP User Facilities and the SBIR/STTR Program

- SBIR/STTR program is important for the DOE Low Energy NP facilities
 - Development of new techniques, instrumentation and supporting systems are suitable SBIR/STTR projects
 - New, higher power facilities are being built worldwide and existing facilities are being upgraded. Many low energy NP facilities exist worldwide
- Examples of possible areas for SBIR/STTR activities are
 - High-rate, position sensitive particle tracking detectors and timing detectors for high-energy heavy-ions
 - Fast data acquisition electronic
 - Target technology (high-power targets, thin targets, windows, strippers, ...)
 - Ion source technology
 - Beam catcher/release systems
 - Radiation resistant precision magnetic field probes
 - Radiation resistant actuator systems
 - Real time data visualization framework
 - Other accelerator related developments

Summary

- There are exciting times ahead in the area of low energy nuclear physics in the US
- FRIB under construction at MSU will be a world-leading rare isotope facility that will enable new discoveries
 - A strong user community exists (FRIB user organization has more than 1700 members)
- Existing low-energy rare isotope beam facilities in the US provide forefront research opportunities today
- DOE NP SBIR/STTR program plays important role in making low energy nuclear physics program successful

