

Jefferson Laboratory Overview Fulvia Pilat NP SBIR/STTR Exchange Meeting, Gaithersburg

Outline

- **Overview** of Jefferson Laboratory
- Mission
- Status and plans
- Scientific and technical capabilities (CEBAF, Upgrade, FEL, SRF (TEDF/TLA), Cryogenics, Detectors, Energy)
- **SBIR/STTR opportunities** at Jefferson Lab in the programmatic areas:

Software and Data Management Electronics Design and Fabrication Accelerator Technology Instrumentation, Detection Systems and Techniques Nuclear Physics Isotope Science and Technology

- Past and present programs
- Future

Jefferson Lab At-A-Glance

- Created to build and Operate the Continuous Electron Beam Accelerator Facility (CEBAF), worldunique user facility for Nuclear Physics:
 - Mission is to gain a deeper understanding of the structure of matter
 - Through advances in fundamental research in nuclear physics
 - Through advances in accelerator science and technology
 - In operation since 1995
 - 1,376 Active Users
 - 178 Completed Experiments to-date
 - Produces ~1/3 of US PhDs in Nuclear Physics (406 PhDs granted, 180 more in progress)
- Managed for DOE by Jefferson Science Associates, LLC (JSA)
- Human Capital:
 - 769 FTEs
 - 22 Joint faculty; 27 Post docs; 14 Undergraduate, 33 Graduate students
- K-12 Science Education program serves as national model
- Site is 169 Acres, and includes:
 - 83 SC Buildings & Trailers; 749K SF
 - Replacement Plant Value: \$331M

FY 2011:

Total Lab Operating Costs: \$185M Non-DOE Costs: \$13M

Jefferson <u>Lab</u>

JLAB Mission

- Deliver discovery-caliber **research** by exploring the atomic nucleus and its fundamental constituents, including precise tests of their interactions
- Apply advanced particle accelerator, detector and other technologies to address challenges of modern society
- Advance knowledge of science and technology through education and public outreach, and
- Provide responsible and effective **stewardship** of resources

CEBAF overview

First large high-power CW recirculating e-linac based on SRF technology In operations since 1995 → served 1400+ nuclear physics users Capabilities: 5 passes, multiple energies, beam characteristics, polarization 3 Halls running simultaneously Upgrade to 12 GeV: proposal late 1990's → approved and funded in 2004

The 12 GeV Upgrade

6 GeV CEBAF

12 GeV Upgrade Schedule

MEIC Medium Energy EIC@JLab

JLab Concept

- Initial configuration (MEIC):
 - 3-11 GeV on 20-100 GeV ep/eA collider
 - fully-polarized, longitudinal and transverse
 - luminosity: up to few x 10³⁴ e-nucleons cm⁻² s⁻¹
- Upgradable to higher energies (250 GeV protons)
- Design Report published in August 2012

Jefferson Lab Electron Ion Collider

Activity Name	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
12 GeV Upgrade																
FRIB																
EIC Physics Case																
NSAC LRP																
EIC CD0																
EIC Machine																
Design/R&D																
EIC CD1/Downsel																
EIC CD2/CD3																
EIC Construction																

JLAB plans

Short (2012-2014)

• install and commission 12 GeV machine

Medium (2015 – 2030)

- Run 12 GeV physics program (50+ experiments approved)
- Exploit SRF core capabilities and new infrastructures
 →work for others
- Prepare EIC (Electron Ion Collider)

Long (2030+)

• "Bid for" and build a EIC at JLAB

Scientific and technical core capabilities

- High power CW **linacs** (CEBAF)
- Theoretical and experimental nuclear physics
- Free Electron Lasers
- e- sources
- SRF science and technology: R&D

Production (new TLA facility)

- Cryogenics technology
- **Detectors** and imaging

Developing:

• Energy applications (sustainability, ADS)

Jefferson Lab FEL

Polarized Electron Source

B. Matthew Poelker 2011 E. O. Lawrence Award

Electron Gun Requirements

- Ultrahigh vacuum
- No field emission
- Maintenance-free

Jefferson Lab

SRF at JLAB

Cavity & Cryomodules for 12 GeV
 R&D program

• The new TLA production facility

C100 SRF cavities

C100: string of **8 7-cell cavities**, **1497 MHz**, produced by **RI** (Research Instruments) **80 cavities** + 8 pre-production tested and assembled at JLAB

18-step qualification process EP derived from ILC R&D

The cavity tests are performed at the Vertical Test Area (VTA) Design gradient: **19.2 MV/m** average Average heat/cavity: **29 W** Operational limit: **25 MV/m** (limited by the klystron RF power and possibly field emission)

Q is BCS-limited

erson L

Cryomodule design and production

The design of the **C100** is an evolution from the **C20** CEBAF cryomodule Experience from the **C50 program** (*reduce field emission* and *raised gradient from 5.5 MV/m to 12.5 MV/m* for 10 of the weakest C20 cryomodules.

Output needed: 98 MV, designed for 108 MV

Primary components procured, assembly and qualification at JLAB

Cryomodule commissioning and operations

2 C100 installed during the 6 months shutdown Commissioned and **in operations Nov 2011-May 2012** Challenges: narrower bandwidth, higher gradient, coupling Learning curve (LLRF, trip recovery, etc.)

C100 reached design energy gain (108 MeV) for the nominal 12 GeV current of 465 μ A on May 17 2012. Full validation of the C100 design.

SRF R&D activities at JLAB

Goals: high cryogenics efficiency (**Qo**), high gradient Activities:

- Novel SRF cavity structures (crab cavities, spokes)
- High Qo R&D
- Ingot niobium technology
- Compact SLS (inverse Compton scattering)
- Cost effective modular cryomodules
- Thin film technology
- High gradient elliptical cavities

Examples of WFO and 'WWO':

ANL crab cavities, FRIB cavities/cryomodules

NGLS (cavities, cryogenics), CERN (LHeC ERL), ESS, ...

New TLA production facility

TLA - continued

2 buildings (SLI program, 30 M\$ investment):
TEDF (Technology Engineering Development Facility)
TLA (Test Lab Addition- 14000 sft addition to TestLab) (8600 sft chemroom / cleanroom)

- Energy efficiency
- Life-safety code compliance
- Work-flow efficiency
- Facility sustainability
- Human work environment
- Technical quality of facilities for future work

Cavity fabrication and cryomodule assembly

- Completely new infrastructures
- Phase 1: existing equipment and tools
- Phase 2: incremental acquisition of new equipment and tools

TEDF occupancy: beginning 2012

TLA occupancy: summer 2012

TestLab renovation: summer 2013

Physics detectors and experimental halls

- Key Features:
 - 1 torus & 1 solenoid magnet
 - new detectors: Cerenkovs, calorimeters, drift chambers, silicon vertex tracker
 - -- re-use some existing detectors
 - hermetic device, low beam current, high luminosity

Hall C SHMS = "Super High Momentum Spectrometer"

- Key Features:
 - 3 quadrupole & 1 dipole & 1 horizontal bend magnet
 - new 6 element detector package
 - complementary to existing spectrometer (HMS)
 - rigid support structure
 - well-shielded detector enclosure

Nuclear physics detector technology

Radiation Detector & Imaging Group- 7 Scientists and Engineers Leader: Drew Weisenberger

Expertise in nuclear particle detection

≻gas based detectors

- ➤standard and position-sensitive photomultiplier tubes (PSPMTs)
- ➢silicon photomultipliers (SiPMs)
- ➤scintillation and light guide techniques
- ➢ fast analog readout electronics and data acquisition
- ➢on-line image formation and analysis
- ➤3D image reconstruction algorithm development
- ≻compact detectors
- Support design and construction of new detector systems-
 - R+D detector components & systems for all Jefferson lab and others
- Technical consultants for the lab scientists and users
- Development and use of imaging and non-imaging detector systems

Tech Transfer: Leveraging the National Lab Strengths

Jefferson Lab provides a **unique technical environment** not found typically in one place in academia or industry.

Technical resources brought together to do basic nuclear physics research:

•advanced radiation detection methods
•state of the art electronics
•software development for 3D imaging
•high performance data acquisition
•optics

Applying nuclear imaging detector techniques for challenges in other fields:

- •nuclear medicine for improved patient care
- •bio-medical research using radioisotopes
- •biological systems research using radioisotopes

Jefferson Lab is a single purpose lab thus requiring **collaborations**

Jefferson⁶Lab

Nuclear Imaging 101

Radioisotopes that emit high energy photons and beta particles are incorporated into molecules that have a biological function of interest. The tagged molecules are then injected or introduced *in vivo* into biological systems:

peopleanimalsplantsmicrobes

Molecular Imaging: The bio-distribution of tagged molecules is imaged externally by devices capable of detecting the emitted particles. Typically the **high energy photons** are highly penetrating thus can be detected and imaged externally. Two molecular imaging techniques:

Single Photon Emission Computed Tomography (SPECT)
Positron Emission Tomography (PET)

Bio-Medical Imaging Modalities

Structural •X-ray CT •MRI

digital x-ray of mouse (JLab)

Tc99mbone scan of live mouse (JLab)

Functional

 Single Photon Emission Computed Tomography (SPECT) Positron Emission Tomography (PET)

Multi Modality ·PET-CT ·PET-MRI ·SPECT-CT

Tc99m

mammogram co-registered JLab/RD&I breast tumor imaged via Tc99m and digital xray then co-registered

Dilon 6800 Gamma Camera

Dilon Technologies, Inc. Newport News, Virginia ~20 employees Based on JLab/RD&I Group spin-off

Several patents licensed from JLab. Presently Dilon and JLab initiating a new CRADA agreement to enhance gamma camera performance.

SBIR/STTR program at JLAB

JLAB has 50+ open WFO and CRADA' s SBIR/STTR (from NP and HEP) supports CRADA' s and WFO

2012: 21 letters of support, 13 companies We expect a similar outcome for 2013

SBIR program at JLAB

CRADAs Support	rted by SBIR	X/STTR							
Participant	Number	Project Description		Funds-In		tal Amount	Comments		
		Electropolishing Niobium in an HF-Free							
Faraday Tech	2011S003	Electrolyte		19,000.00	\$	105,000.00			
		Muon Beam Cooling Using Parametric							
Muons, Inc.	2005S005	Resonances		60,000.00	\$	650,000.00			
		Rugged Ceramic Window for RF					SOW tasks include preparation of		
Muons, Inc.	2008S010	Applications	\$	30,000.00	\$	100,000.00	Phase II proposal		
		Pulsed Focusing Recirculating Linacs for					SOW tasks include preparation of		
Muons, Inc.	2008S012	Muon Acceleration	\$	30,000.00	\$	100,000.00	Phase II proposal		
							SOW tasks include preparation of		
Muons, Inc.	2009S013	High Power Co-Axial SRF Coupler	\$	27,000.00	\$	100,810.00	Phase II proposal		
							SOW tasks include preparation of		
Muons, Inc.	2009S014	Improved DC Gun Insulator Assembly		28,000.00	\$	100,000.00	Phase II proposal		
		Pulsed Focusing Recirculating Linacs for							
Muons, Inc.	2010S002	Muon Acceleration	\$	225,000.00	\$	750,000.00	Phase II		
		Epicyclic Helical Channels for Parametric					SOW tasks include preparation of		
Muons, Inc.	2010S015	References	\$	30,000.00	\$	99,999.00	Phase II proposal		
							SOW tasks include preparation of		
Muons, Inc.	2010S016	A Novel Crab Cavity RF Design	\$	27,000.00	\$	99,999.00	Phase II proposal		
Muons, Inc.	2011S009	High Power Co-Axial SRF Coupler- STTR	\$	209,760.00	\$	750,002.00	Phase II		
		Photoinjector Enhancements Using Surface					SOW tasks include preparation of		
Muons, Inc.	2011S020	Acoustical Waves	\$	30,000.00	\$	100,000.00	Phase II proposal		
		Achromatic Low Beta Interaction Region					SOW tasks include preparation of		
Muons, Inc.	2011S021	Design	\$	30,000.00	\$	100,000.00	Phase II proposal		
		Phase II SBIR- Alternating Dispersion Muon							
Muons, Inc.	2011S025	Cooling Channel	\$	225,000.00	\$	750,000.00			
		Complete Muon Collider Cooling Channel					SOW tasks include preparation of		
MuPlus, Inc.	2012S005	Design and Simulations	\$	30,000.00	\$	100,000.00	topics for Phase II		
		Devleop CW NCRF Photo-Injector Using							
Radiabeam	2009S017	Solid Freeform Fabrication (SFF)	\$	10,000.00	\$	93,596.00			
		Phase II SBIR- Deviceop CW NCRF Photo-							
		Injector Using Solid Freeform Fabrication							
Radiabeam	2011S008	(SFF)	\$	74,520.00	\$	939,662.47	Phase II		
		Simulation of Electromagnetic and Thermal					Final report notes funding from DOE		
Tech-X	2009S005	Characteristics of SRF Structure	\$	29,978.00	\$	161,087.00	Office of Nuclear Physics		
		Simulation of Electromagnetic and Thermal							
Tech-X	2010S001	Characteristics of SRF Structure	\$	119,999.00	\$	781,047.00	Phase II		
WFO Supported	by SBIR/ST	TR							
Participant	Number	Project Description		Funding			Comments		
Alameda Applied		Evaluation of Coatings in Support of SBIR							
Sciences Corp.	2006W009	Award	\$	53,000,00					
Alameda Applied		Thin-Films of Nb Deposited on Cu for Lower	-						
Sciences Corp.	2011W010	Cost SRF Accelerators	\$	25,000,00					

SBIR opportunity areas at JLAB

- Software and Data Management
 Simulations for CEBAF and EIC (accelerators and detectors)
- Accelerator Technology SRF R&D, RF power, e- sources, cryogenics, energy
- Instrumentation, Detection Systems and Techniques
- Electronics Design and Fabrication Nuclear imaging, detectors CEBAF, EIC
- Nuclear Physics Isotope Science and Technology
 CW e- linac based isotope production facilities

SRF:	B. Rimmer
EIC:	G. Krafft
e-sources:	M. Polker
Imaging:	D. Weisenberger

Conclusions

- There is a rich tradition at JLAB of work for others and with others (WFO, CRADA's)
- The SBIR/STTR program has consistently leveraged JLAB core capabilities in the past
- We intend to continue and strengthen this program as WFO becomes a central component of JLAB strategy and plans in the 12 GeV era.

BACK-UP SLIDES

External Partners	
 Triangle Universities Nuclear Laboratory West Virginia University Hampton University Proton Therapy Institute University of Virginia University of Maryland Johns Hopkins University Case Western Reserve University College of William and Mary Duke University Columbia University Dilon Technologies, Inc. 	External Funding (beyond DOE NP) •DOE BER •NIH (WFO) •DOD •JSA

Tech Transfer Business partnership opportunities for technology transfer: Jefferson Lab Patents: 1991-present: 99 Radiation Detector & Imaging Group Patents: 1995-present: 31 several have been licensed

Clinical Application- Cancer Surgery

Problem: Need for compact handheld imaging gamma-ray detector to do lymphoscintigraphy for use in cancer surgery

Solution: Use array of 80 silicon photomultipliers (SiPMs) to develop a compact detector with $LaBr_3$ (5 cm diam, 6 mm thick) scintillator and custom tungsten-polymer composite two-part collimator

"Gamma Puck": Handheld detector with tungsten shell and tungsten collimators

Clinical trials of Hand-Held Gamma Camera at

the University of Virginia

radiopharmaceutical used to identify sentinel lymph nodes with cancer involvement during breast cancer surgery

~ 3cm lymph node

University of Virginia Cancer Center Technology Partnership Initiative: "Image-Guided Surgical Oncology Using a Hand-Held Gamma Camera Operated in Freehand SPECT Mode"

Dilon Technologies, Jefferson Lab and UVa awarded funds to facilitate R+D

