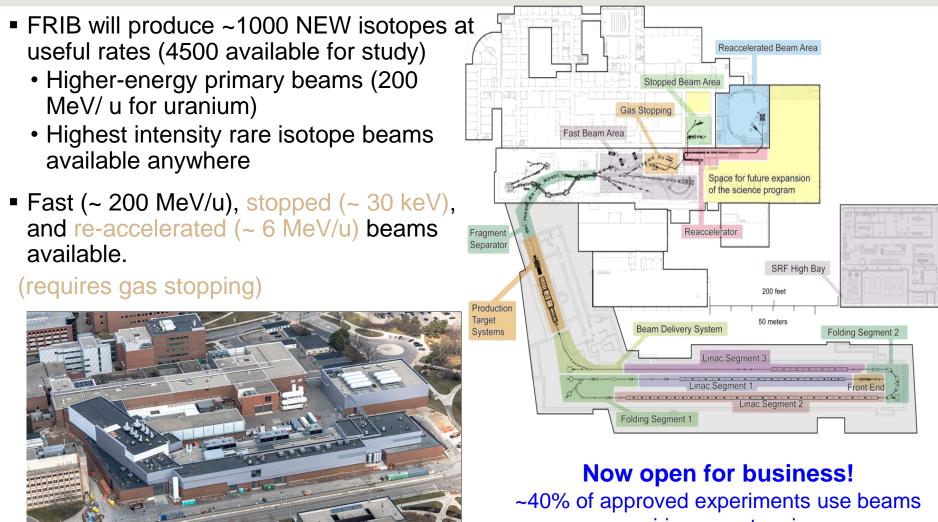


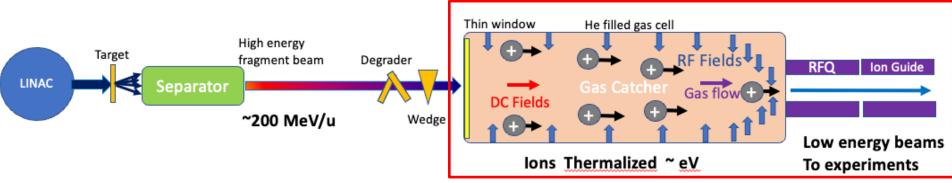
Gas Stopper Developments for Improved Purity and Intensity of Low-Energy, Rare Isotope Beams

Ryan Ringle


This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics and used resources of the Facility for Rare Isotope Beams (FRIB), which is a DOE Office of Science User Facility, under Award Number DE-SC0000661.

Outline

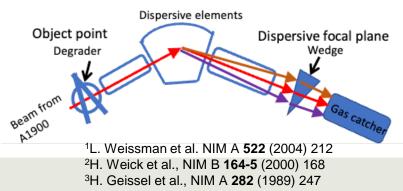
- Facility for Rare Isotope Beams (FRIB)
 - Gas stopping concepts for production of low-energy, rare-isotope beams
 - Current (and pending) gas stoppers at FRIB
 - User needs and challenges
- Developments Enabled by This Project
 - Development of simulation tools to optimize ion transport in the presence of space charge
 - Development of a demonstrator collision-induced-dissociation (CID) gas cell for improving beam purity
- Status Updates
 - Concentrate on CID gas cell
- Project Management Updates
- Summary and Outlook


FRIB – Facility for Rare Isotope Beams World-Leading Next-Generation Rare Isotope Beam Facility

requiring gas stopping.

Beam Stopping of Fast Projectile Fragments

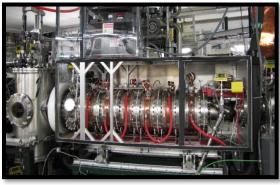
- Production of fragments from high-energy beam
 - Large momentum spread due to reaction mechanism and production target.
- * B ρ and ΔE separation
 - A1900/ARIS separator (High acceptance: 5% ∆p/p), achromatic wedge
- Momentum compression and thermalization
 - Narrow momentum spread beams lead to high stopping efficiency¹
- Gaseous ions collection
- Low energy beam transport


Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

30-60 kV platform

Method for producing an ideal incident beam:


- Degrade beam at the object point
- Bunch momentum spread with wedge at the dispersive focal plane^{2,3}

R. Ringle, DOE NP Exchange 2023, 12/07/23, Slide 4

Beam Stopping at FRIB ISOL-Like Beam Properties at a Fragmentation Facility

Original system: ANL Linear Gas Stopper¹

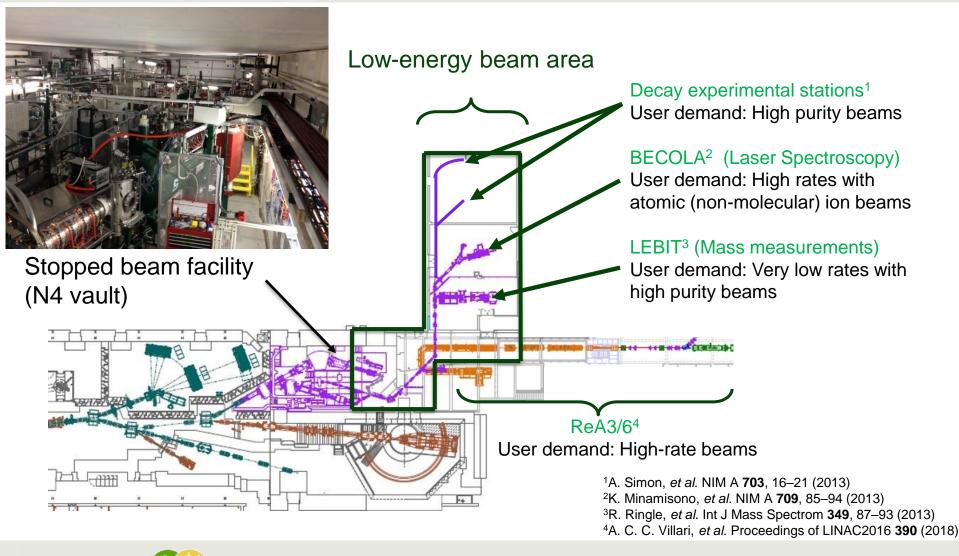
- Filled with ~100 mbar He
- Ions lose energy in collisions with He atoms
- DC + RF electric fields and gas flow used to transport ions through
 - ¹C.S. Sumithrarachchi, et al. NIM B 463, 305–309 (2019)

State of the Art: Advanced Cryogenic Gas Stopper²

²K. R. Lund *et al.* NIM B **463**, 378–381 (2019)

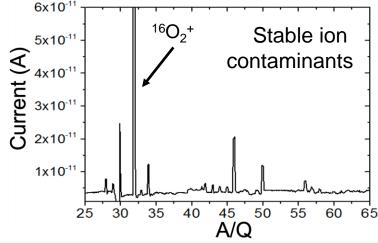
- Cryogenic (40 K) for higher beam purity
- Optimized for good efficiency with high beam rates
- Currently in operation

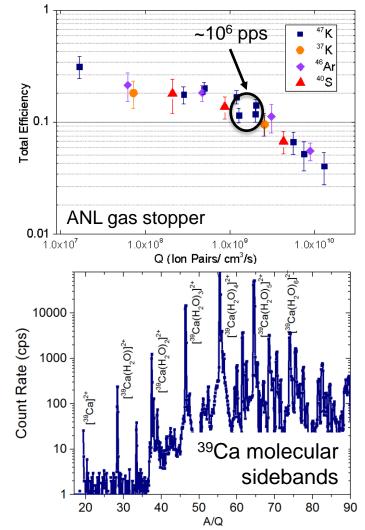
In progress: Cyclotron Gas Stopper³


- lons lose energy, spiral towards center
- Spiral path provides long stopping distance
- Good for light ions
- First beam extracted

³S. Schwarz et al. NIM B **463**, 293–296 (2020)

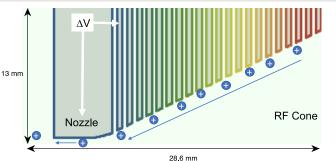
Facility for Rare Isotope Beams

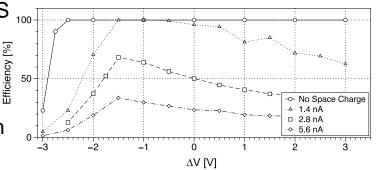

Experiments Using Stopped and Re-Accelerated Beams Have Different Requirements

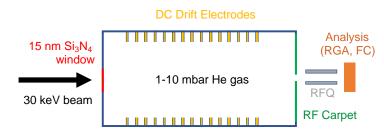

Challenges to Beam Purity, Rate, and Molecular Formation

- Generation of large space-charge fields
 - He⁺/e⁻ created during stopping process
 - Can hinder transport efficiency
- Molecular ion formation with stopped rare isotopes
 - Spreads rare isotope across several mass peaks
 - Reduces efficiency through mass separator
- Large stable molecular ion beams
 - Trace contaminants in buffer gas or on surfaces are ionized during stopping process
 - Can cause efficiency losses in extraction

Facility for Rare Isotope Beams

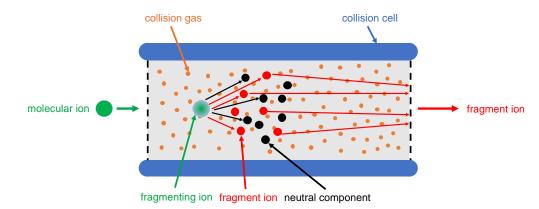


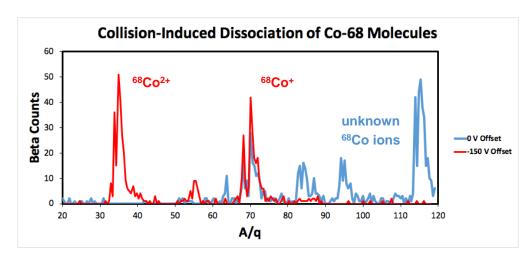

Next Generation Gas Stopper Developments Enabled by This Project


- Development of simulation tools to optimize ion transport efficiency through the stopping volume in presence of space charge
 - Use IonCool¹ and adapt particle-in-cell² (PIC) code to simulate transport efficiency in realistic space-charge fields
 - Validate using ion transport measurements across ACGS RF carpet
- Development of simulation tools to optimize extraction efficiency
 - Adapt PIC code to study ion extraction efficiency through orifice in presence of large stable molecular beams.
 - Validate using measurements performed with ANL and ACGS
- Build and test a low-pressure collision-induceddissociation (CID) gas cell to purify beams
 - Study transmission efficiency through 20 nm thick Si3N₄ entrance windows
 - Study CID process in molecular beams generated offline using existing ions sources

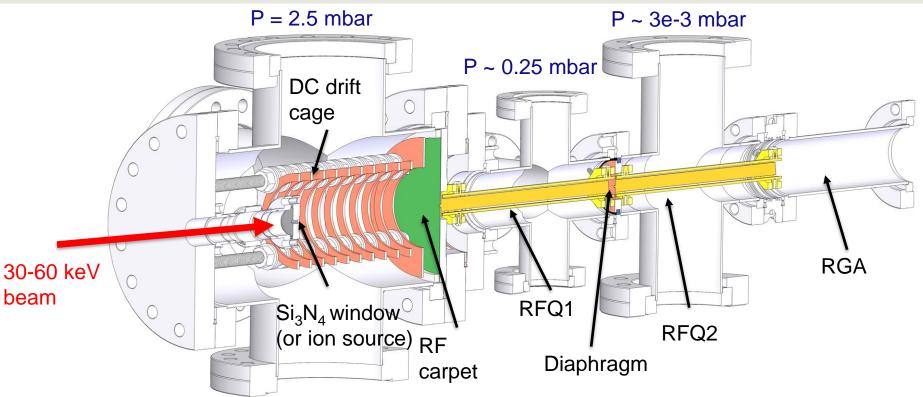
Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

¹S. Schwarz, NIM A **566**, 233–243 (2006) ²R. Ringle, Int J Mass Spectrom **303**, 42–50 (2011)

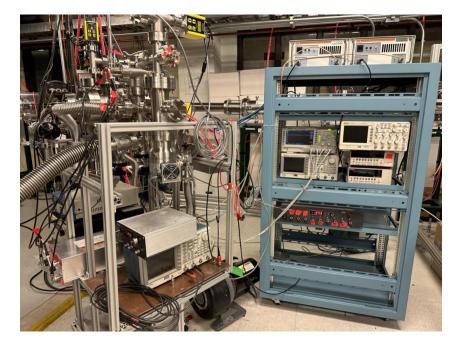

Collision-Induced Dissociation (CID) can Purify Rare Isotope Beams

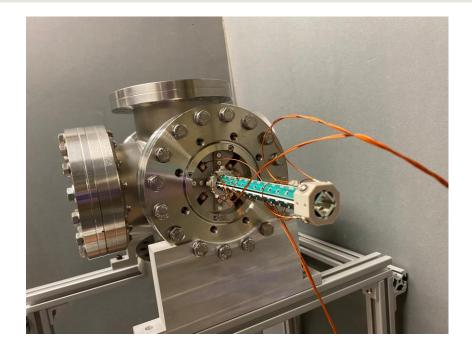

- CID is a mass spectrometry technique widely used in analytical chemistry^{1,2}
- Molecules are accelerated into a buffer gas
- Inelastic collisions transfer some energy into the internal modes, breaking bonds
- CID is currently used at FRIB by applying a potential offset between the gas stopper and RFQ.
- Demonstrated in multiple experiments
- Not violent enough to break the strongest molecular bonds
- A dedicated device needs to be developed to break the strongest molecular bonds

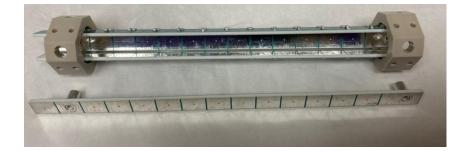
¹J.M. Wells, S.A. McLuckey, Meth. Enzymol. **402** (2005) 148–85 ²L. Sleno, D.A. Volmer, J. Mass Spectrom. 39 (2004) 1091–112



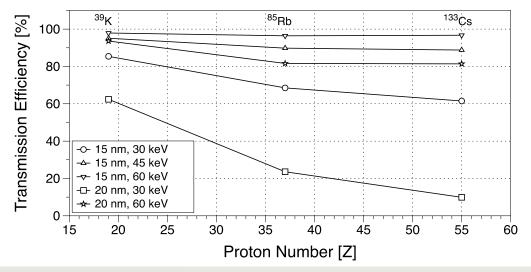
Facility for Rare Isotope Beams

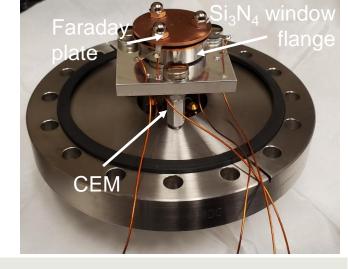

Demonstrator CID Gas Cell Will Enable Feasibility Studies




- 30-60 keV molecular or atomic ion beams provided by existing gas cells
- lons are transported by DC drift cage to RF carpet
- lons are extracted through small orifices into RFQ1&2 for transport and differential pumping
- Ion species identified by RGA with ionizer disabled
- System is complete and functional. Offline commissioning using K ion source.

Completed CID Gas Cell Demonstrator

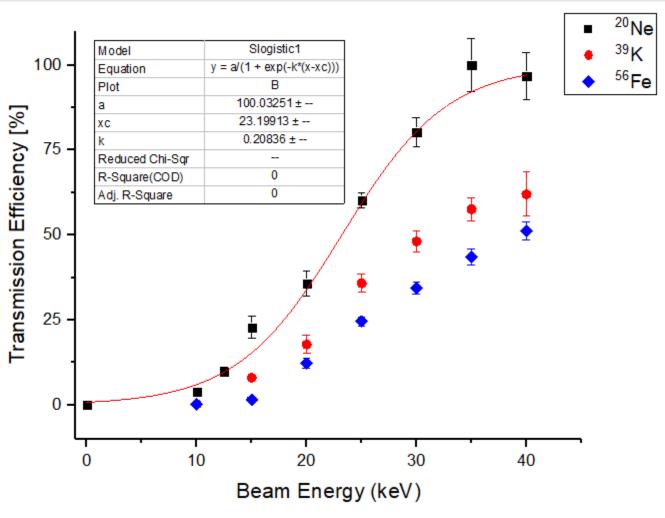



Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

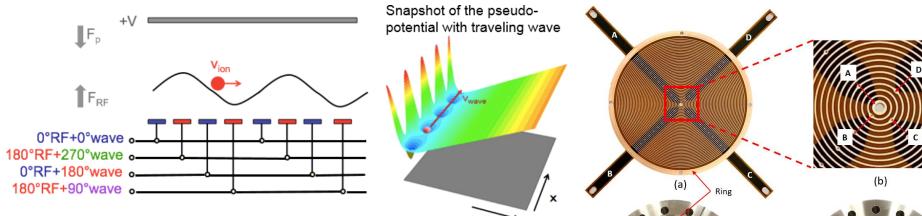
R. Ringle, DOE NP Exchange 2023, 12/07/23, Slide 11

Ion Transmission Efficiency Studies through Si₃N₄ Windows

- Need to quantify ion transmission efficiency through thin Si₃N₄ windows
- SRIM can provide an estimate, but may not be accurate at this thickness
- Built a detector to measure ion transmission efficiency
 - Channeltron (CEM) for single-particle counting
 - Faraday plate with hole to measure incident current on Si₃N₄ window
 - Installed and measurements have been performed.



Facility for Rare Isotope Beams


Initial Transmission Studies Show Promising Results

- Only statistical errors considered
- Limited to 40 kV maximum beam energy
- Trend for different masses show expected trend
- Some inconsistencies developed over time.
- Longer term testing and more data would be helpful

Ion Transport Across the RF Carpet

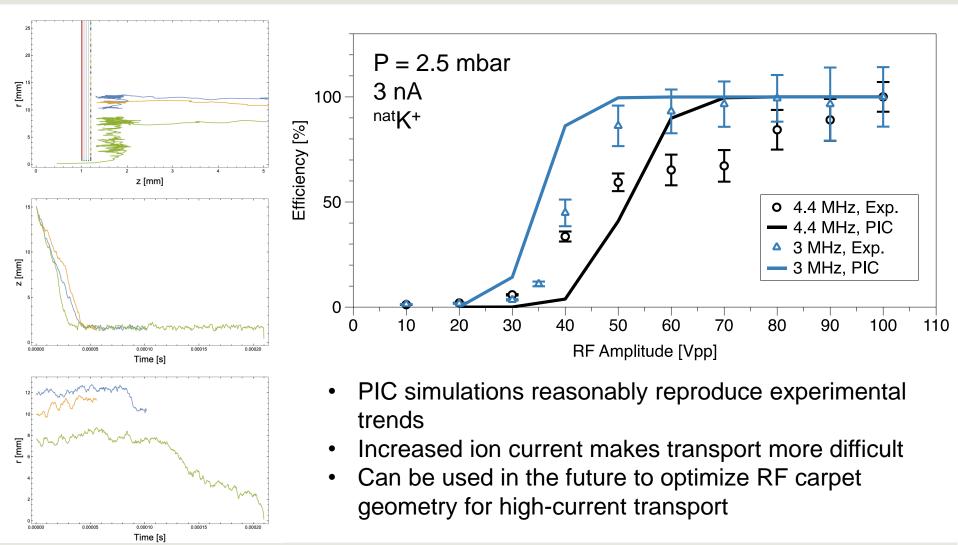
Traditional ion surfing method¹

- High-frequency (MHz) RF
- Low-frequency (kHz) travelling wave
- High transport speeds and efficiencies demonstrated^{2,3}

Pure-surf RF carpet

- Simplifies RF circuit
- Higher push-field tolerance

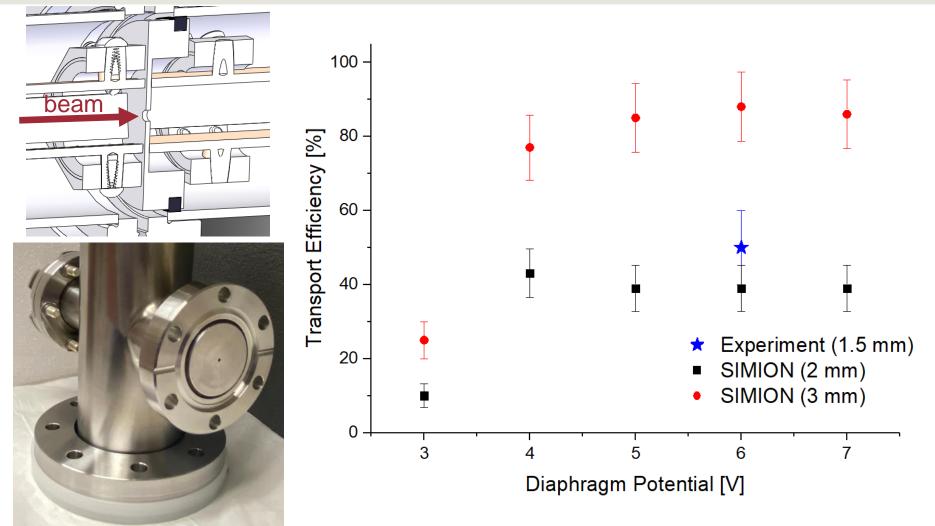
¹G. Bollen, Int. J. Mass Spectrom. **299**, 131 (2011).
²M. Brodeur, *et. al.*, Int. J. Mass Spectrom. **336**, 53 (2013).
³A. E. Gehring, *et. al.*, Nucl. Instrum. Meth. B **376**, 221 (2016).



 CID RF carpet can be run in traditional or pure-surfing modes

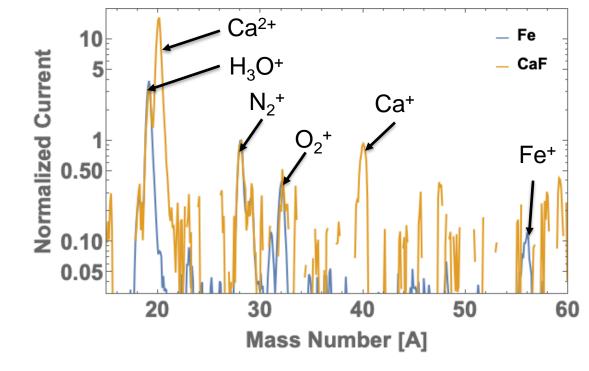
Backing Plate

 Incident ion current will impact transport efficiency!


Particle-in-Cell Simulations Reproduce Ion Transport Across RF Carpet

Facility for Rare Isotope Beams

Ion Transport Through Diaphragm Shows Good Agreement with Simulation



Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

CaF⁺ Molecule Successfully Broken

- CaF⁺ delivered from BMIS ion source
- Pressure:
 - 1-2x10⁻³ mbar
- Incoming current
 ~1 nA (~ 10% efficiency)
- Reasonable resolution for single mass identification
- Currents normalized to N₂ peaks
- Clear evidence of molecules being broken!

Project Management (Financials)

Final financial breakdown

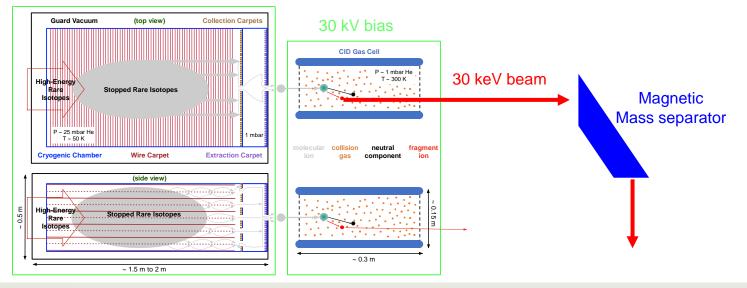
	FY21	FY22	FY23	Totals
a) Funds allocated	\$122k	\$234k		\$356k
b) Actual costs to date	\$106k	\$191k	\$59k	\$356k
c) Budget request	\$122k	\$234k		\$356k

Item/Task	FY21	FY22	FY23
	(\$)	(\$)	(\$)
Simulation/CID effort	84,219	145,887	59,162
CID hardware	5,667	9,857	0
Materials & supplies	13,738	10,174	0
Fabrication costs	2,516	10,928	0
Travel	0	13,852	0
Publication costs	0	0	0
Total	106,140	190,698	59,162

Project Management (Schedule)

Task (RF carpet ion transport simulations)	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
Collect results from previous 4-phase simulations	100%											
Complete missing 4-phase simulations		100%										
Develop 8-phase simulation				100%								
Execute 8-phase simulations								100%				
Analyze results										100		
Task (CID gas cell demonstrator)	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q	Q	Q
		QL	40	44	40					10		12
Procure Si ₃ N ₄ windows and mounts	100%									10		12
Assemble Faraday cup for transmission	100%											+
measurements	10078											
Measure transmission of windows						100%						
Design prototype CID gas stopper				100%								
Procure prototype CID gas stopper hardware							100%	6				
Fabricate prototype CID gas stopper						100%						
Install prototype CID gas stopper on d-line							1009	%				
extension												
Test prototype CID gas stopper with stable beam											100%	
Analyze results												100

Task (Particle-in-cell simulations)	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
Development of single-layer RF carpet simulations	100%											
Execution of single-layer RF carpet simulations		100%										
Development of extraction simulations		100%										
Execution of extraction simulations		100%										
Development of multi-layer RF carpet simulations			100%									
Execution of multi-layer RF carpet simulations										100		
Analyze results, execute follow up simulations (if											100	
needed)												
Develop conceptual design based on all objectives												100



Facility for Rare Isotope Beams

Summary and Outlook

- For the first time we have a complete simulation pipeline for transport and extraction of rare isotopes from linear gas stoppers
 - Agrees well with current experimental results
 - Has already yielded dividends with improvements to ACGS
 - Well positioned to deliver developments that will increase the rate capability of future linear gas stoppers
 60 kV bias

- A demonstrator CID gas cell with thin Si₃N₄ window has been developed to evaluate its feasibility in removing stable beam contaminants
 - Device is operational
 - Optimization is happening offline with dedicated ion source
 - Multiple molecular beams demonstrated to be broken.

Facility for Rare Isotope Beams

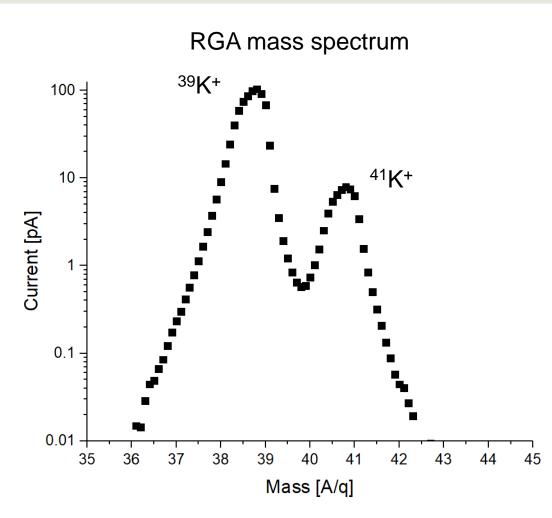
Acknowledgements

NP-DOE DE-SC0021423

- Co-Pls : Georg Bollen and Antonio Villari
- Postdoc : Nadeesha Gamage
- Student : Daniel Puentes
- Beam delivery : Chandana Sumithrarachchi and Stefan Schwarz

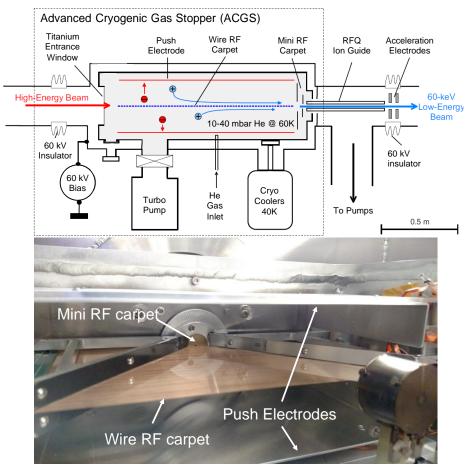
This work was conducted with the support of the Department of Energy, USA under Grant No. DE-SC0021423.

Backup Slides

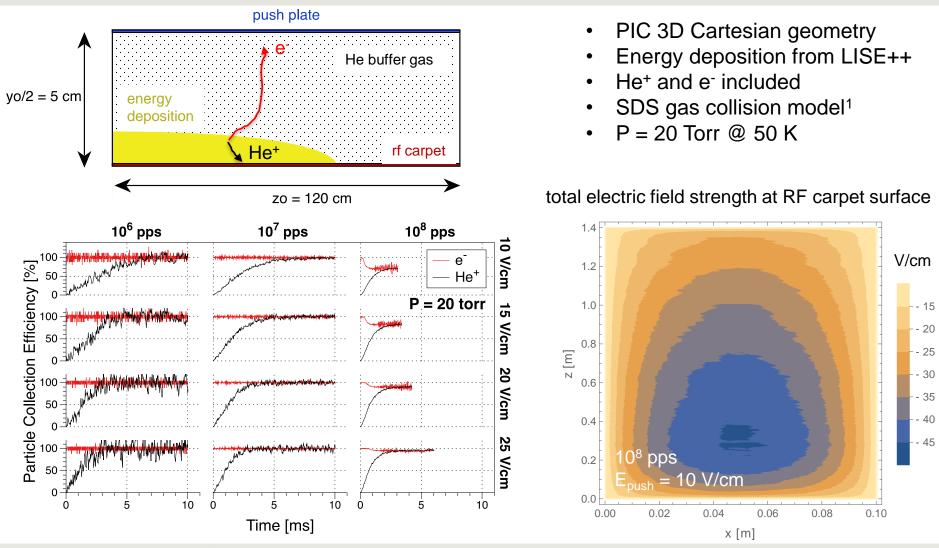

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

R. Ringle, DOE NP Exchange 2022, 11/29/22, Slide 22

^{39,41}K⁺ Successfully Transported and Detected at RGA

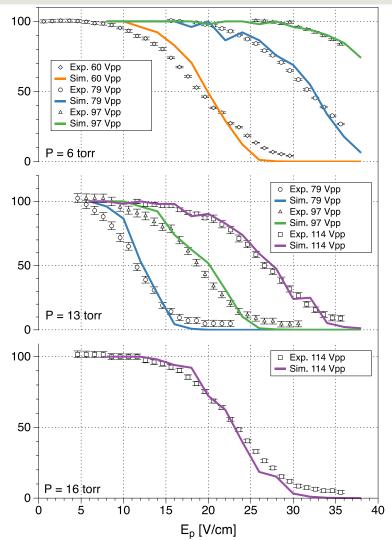

- Both ³⁹K⁺ and ⁴¹K⁺ observable with current settings
- Pressure:
 - 1-2x10⁻³ mbar
- Incoming current
 ~1 nA (~ 10% efficiency)
- Reasonable resolution for single mass identification
- Next steps:
 - Improve injection into RGA to improve efficiency
 - External molecular beams starting this week!

R. Ringle, DOE NP Exchange 2023, 12/07/23, Slide 23

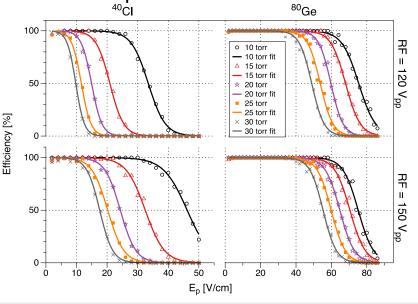

PIC Simulations Have Been Developed to Study Ion Transport and Extraction Efficiencies

- Total electric field at the surface of the wire RF carpet
 - Each stopped rare isotope generates ~ 10⁶ He⁺/e⁻ pairs
 - Slow He⁺ ion removal increases space charge in ACGS body, reducing transport efficiency
 - Increase He⁺/e⁻ collection speed
- Charge capacity of extraction carpet and orifice
 - Charge exchange and/or direct ionization of impurities in He buffer gas generates beams of stable molecules
 - Extraction efficiency can be compromised by large stable beam currents
 - Increase charge throughput

Calculating the Total Electric Field at the Surface of the RF Carpet

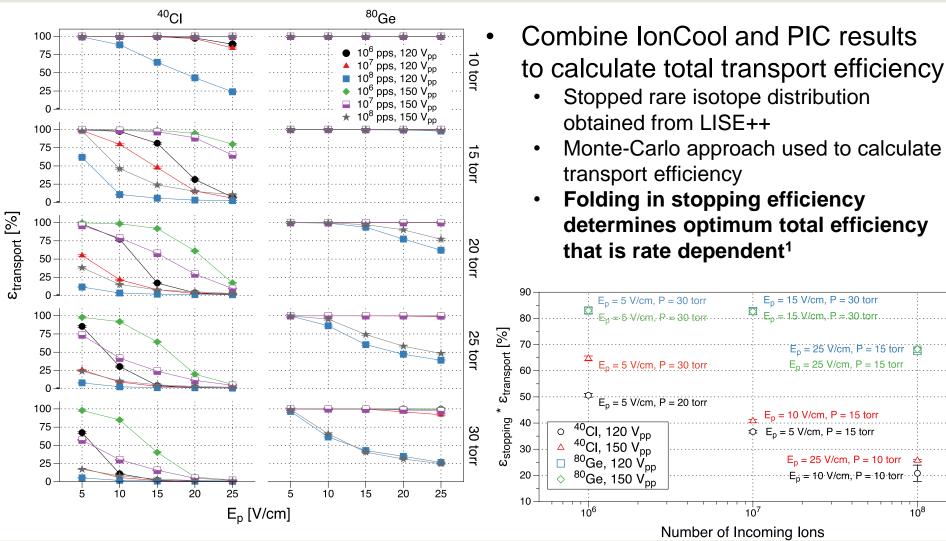

¹A.D. Appelhans & D. A. Dahl, Int J Mass Spectrom 244, 1–14 (2005)

U.S. Department of Energy Office of Science Michigan State University


Facility for Rare Isotope Beams

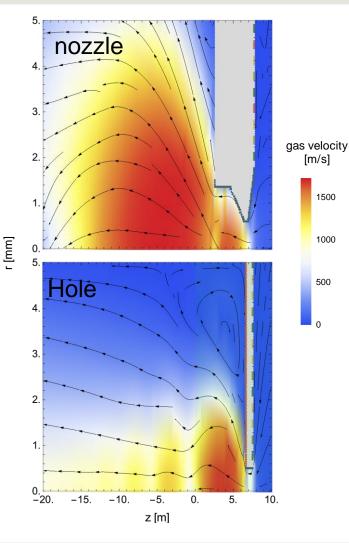
FRI

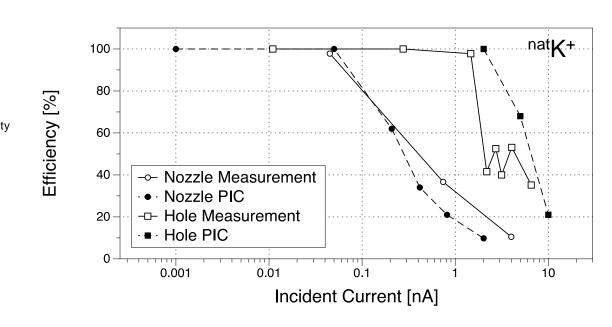
IonCool Accurately Calculates Ion Transport Efficiency Across ACGS RF Carpet


- Need to determine ion transport efficiency as a function of E_{push}
 - Using ACGS, ion transport efficiency of ³⁹K⁺ was measured
 - Multiple pressures at T=50K.
 - IonCool simulation results show good agreement with experiment
 - Confident in IonCool results to make broader predictions

Facility for Rare Isotope Beams

Total RF Carpet Transport Efficiency from PIC and IonCool


Facility for Rare Isotope Beams U.S. Department of Energy Office of Science


Michigan State University

R. Ringle, DOE NP Exchange 2023, 12/07/23, Slide 27

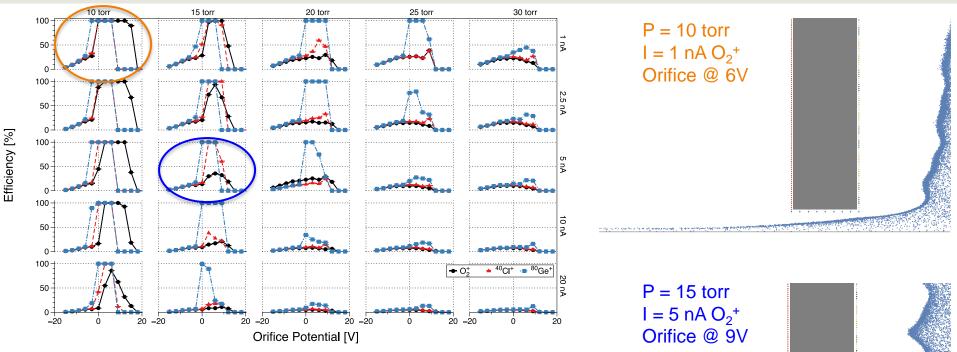
¹R. Ringle, R. et al. NIM B 496, 61–70 (2021).

PIC Simulations of ACGS Extraction System Yield Efficiency Improvements

- 2D cylindrical RZ geometry
- Gas flow calculated with COMSOL
- Traveling wave transport across RF carpet^{1,2}
- Compared original ACGS "nozzle" extraction to a simple hole
- Simulations accurately predicted significant gain in throughput for the hole vs. nozzle

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University


1500

1000

500

¹G. Bollen, Int J Mass Spectrom **299**, 131–138 (2011) ²M. Brodeur et al., Int J Mass Spectrom **336**, 53–60 (2013)

Contaminant Ions Can Have a Significant Impact on Extraction of Rare Isotope Beams

- Scan potential applied to orifice and vary the incident O₂⁺ current
- Once steady state is reached, create tracer particles for rare isotopes (⁴⁰Cl⁺ and ⁸⁰Ge⁺)
- O₂⁺ current can have a significant impact on extraction efficiency of rare isotopes
- Many studies complete and underway to optimize performance

