### **DECEMBER 7, 2023**

2023 NP Accelerator R&D PI Exchange Meeting



# **A PRACTICAL NIOBIUM** TIN CAVITY FOR THE **ATLAS** SUPERCONDUCTING LINAC



MARK KEDZIE

TOM REID

**BEN GUILFOYLE** 

**KAELA VILLAFANIA** 

THOMAS MCDONALD

PAUL DAVIS

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

**‡** Fermilab

SAM POSEN

**GRIGORY EREMEEV** BRAD TENNIS

RadiaBeam SERGEY KUTSAEV

RONALD AGUSTSSON

**ED SPRANZA** 

ALESSANDRO SCHILLACI





### OUTLINE

Introduction – Why Niobium-tin for low-beta? / Main goals (slides 3-5)

Budget and deliverables (slides 6-7)

Highlights from last report (slides 8-9)

New work and results (slides 10-19)

Plans (slides 20-23)



## The Present Paradigm for CW Accelerators Like ATLAS

Modern linear accelerator cavities are based on high-purity Nb

Common shapes for modern SC cavities Cavity designs emerge Fermilab elliptical from: cavity 1000 Accelerator needs herrow 1.3 GHz Spoke (energy, voltage, Elliptical current etc.) Intrinsic material High  $\beta \sim 1$ Frequency (MHz) properties of Med  $\beta \sim 0.2 - 0.7$ ) ATLAS niobium 100 quarter-Half-wave wave • For our low- $\beta$  ion acceleractors QWR most Quarter-wave efficient geometry Low  $\beta < 0.2$ Niobium  $\rightarrow$  large, 10 β=**0.1**  $\beta = 1$ ~100 MHz Particle Velocity [B=v/c]





### **MOTIVATION**

TRANSFORMATIONAL COST REDUCTIONS THROUGH NIOBIUM-TIN COATINGS WITH SIMILAR OR BETTER OVERALL PERFORMANCE RELATIVE TO NIOBIUM

- Ion accelerator cryomodules are large and costly, of order ~\$10M per module
- Helium refrigerators, kW scale, are large and costly, of order ~\$10M per kW @ 4.5 K
- Main goal: (1) Large size/cost reductions for ion linac cryomodules, (2) Elimination of need for cryoplant; cooling within capacity of new larger cryocoolers



2019 ANL/FNAL half-wave cryomodule for PIP-II



2009 ATLAS Energy Upgrade Cryomodule 2014 ATLAS Energy and Intensity Upgrade Cryomodule



2023 NP Accelerator R&D PI Exchange Meeting, Thursday December 7



### **WHY USE NIOBIUM-TIN FOR A QUARTER-WAVE CAVITY?** TRANSFORMATIONAL COST REDUCTIONS THROUGH NIOBIUM-TIN COATINGS WITH SIMILAR OR BETTER OVERALL PERFORMANCE RELATIVE TO NIOBIUM

- Present state: Ion linacs are built from large ~1+ meter long niobium cavities
  - Niobium R<sub>s</sub> y several 10's nΩ → Cryomodule loss ~100 Watts in 4.5 K helium (dot-dash red curve)
- Future: Small (high frequency) niobium-tin coated cavities with milliwatt-level heat loads (solid blue)
- Approach for achieving main goal:

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

- Complete testing development on 218 MHz cavity
- Complete 2<sup>nd</sup> cavity at 145 MHz suitable for installation into ATLAS









### SUMMARY OF EXPENDITURES BY FISCAL YEAR (FY):

|                         | FY22 (\$) | FY23 (\$) | Totals (\$) |
|-------------------------|-----------|-----------|-------------|
| a) Funds<br>allocated   | 619,000   | 639,000   | 1,258,000   |
| b) Actual costs to date | 548,915   | 516,965   | 1,065,880   |





### **MAJOR DELIVERABLES AND SCHEDULE**

| Deliverable                                                             | Forecast Schedule | Status                             | Additional<br>Comment                        |
|-------------------------------------------------------------------------|-------------------|------------------------------------|----------------------------------------------|
| a) Coat 1st low-beta<br>niobium cavity                                  | March 2023        | Performed June<br>2023             |                                              |
| b) Complete final<br>design of reduced<br>frequency (buncher)<br>cavity | June 2023         | Complete June 2023                 | Adding gusset<br>based on 218 MHz<br>results |
| c) Testing on the 1 <sup>st</sup><br>niobium-tin cavity                 | July 2023         | 1 <sup>st</sup> testing Sept. 2023 | 2 additional tests<br>(one is ongoing)       |
| d) Fabrication of 145<br>MHz rebuncher<br>cavity parts<br>complete      | November 2023     | Hydroformed parts complete         | Need to fabricate reinforcing gusset         |
| e) Coat 2 <sup>nd</sup> Iow-beta<br>cavity                              | January 2024      | Revised date April<br>2024         |                                              |
| f) Cryocooler testing complete                                          | September 2023    | Complete at<br>Sumitomo            | Delivery to<br>RadiaBeam                     |







### NIOBIUM PARTS FORMING IN CHICAGO AREA

#### **3 TOROID (HYDROFORMING)**

The toroid of the Nb3Sn was also hydroformed by Stuecklen. A 12" by 12" sqaure Nb blank (thickness of 0.125") was used for the toroid fabrication. 3.3 STEP 3

#### 3.1 STEP 1

In Step 1, the steel die was provided by Stuecklen.



Figure 5: Step 1 forming.







Figure 6: Step 2 forming.





Figure 7: Step 3 forming. Note: the nub shown in the old design follows the profile of the nub used in the dome. The new design was adopted in the final toroid die.



2023 NP Accelerator R&D PI Exchange Meeting, Thursday December 7



### **CAVITY TUNING AND ELECTRON BEAM WELDING**









![](_page_9_Picture_1.jpeg)

#### LS. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

niobium

rounds)

### Verification testing on the bare niobium cavity before coating

11

Bare cavity meets design goals (Bpeak~60 mT with no quench)

![](_page_10_Figure_2.jpeg)

U.S. DEPARTMENT OF LOS. Department of Energy laboratory managed by UChicago Argonne, LLC.

2023 NP Accelerator R&D PI Exchange Meeting, Thursday December 7

# Niobium-tin coating parameters for the quarter-wave cavity

Adapt a successful process from a recent 1-cell 650 MHz cavity with same surface area

- Nb<sub>3</sub>Sn by vapor diffusion: Most successful method relative to cavity performance
- Tin quantity: From cavity surface area and desired thickness
  - QWR surface area=0.46 m<sup>2</sup>, E-cell surface area
    0.49 m<sup>2</sup> Y4 grams of tin
- Nucleation: 0.8 grams SnCl<sub>2</sub>
- Heaters: Furnace (1100 °C) and tin source heaters independently controlled. Tin source ~100-200 °C hotter than furnace

![](_page_11_Figure_7.jpeg)

![](_page_11_Figure_8.jpeg)

![](_page_11_Picture_9.jpeg)

![](_page_11_Picture_10.jpeg)

![](_page_11_Picture_12.jpeg)

### **Cavity coating at Fermilab**

### ~1 week process to dress, coat, cool and remove cavity from the furnace coating chamber

![](_page_12_Picture_2.jpeg)

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

![](_page_12_Picture_5.jpeg)

**‡ Fermilab** <sup>13</sup>

# **Experimental Apparatus**

24" diameter liquid helium dunk dewar

![](_page_13_Picture_2.jpeg)

![](_page_13_Picture_3.jpeg)

- New system for 'dunk testing': Adapted our 24" dewar in Sept/Oct 2023
- Cavity: Sits in ~1 meter tall bath of 4.5 K liquid helium with active vacuum pumping on the RF volume
- Refrigeration: ANL test facility model 1630 helium refrigerator
- Diagnostics:
  - 6 channels thermometers
  - 1 magnetic field probe
  - Helium pressure transducer

![](_page_13_Picture_11.jpeg)

![](_page_13_Picture_13.jpeg)

### Cooldown through SC Transition, T<sub>c</sub>~18 K

The cool down through Tc requires particular care: Seebeck effect known to cause Q drop

Warm up above  $T_c$  after initial cooling

And then, slow (uniform) cooldown through  $T_c$ 

![](_page_14_Figure_4.jpeg)

![](_page_14_Picture_5.jpeg)

### Magnetic fields and the niobium-tin cavity

Trapped magnetic fields lower the Q in Nb<sub>3</sub>Sn (similar as for niobium)

- Unlike for niobium, flux expulsion by fast cooldown cannot be used with Nb<sub>3</sub>Sn because fast cooldown also creates thermocurrents (Seebeck effect) that lower the Q in Nb<sub>3</sub>Sn
- Data show complete flux trapping after the required slow cooldown → Niobium-tin requires starting with low mag. field

![](_page_15_Figure_4.jpeg)

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

2023 NP Accelerator R&D PI Exchange Meeting, Thursday December 7

### **Results from first and second rounds of testing**

First round of testing limited by cryogenics issues, second round consistent with third round (ongoing)

- Upper curve: Q vs. E measured after the cooldown of the 2<sup>nd</sup> testing cycle
- Lower curve: Q vs. E measured after the cooldown of the 1<sup>st</sup> testing cycle (cleaned He refrigerator in between)
- Quality Factor: Substantially higher than theoretical limit for niobium up to ~3-4 MV/m
- Q-slope: Strong above 4 MV/m
  - Need to find the origin

![](_page_16_Figure_7.jpeg)

![](_page_16_Picture_8.jpeg)

![](_page_16_Picture_10.jpeg)

### **Quality factor vs accelerating gradient at 4.5 K**

Cavity appears to be very sensitive to trapped flux from a simple thermal quench

- Upper curve: Q vs. E measured after the cooldown of the 2<sup>nd</sup> testing cycle
- Lower curve: Same testing cycle (a couple days later), but after a single observed thermal quench
- Thermal currents during the quench are thought to be the cause
  - Cavity recovers if warmed above Tc
- Significance: In operations (e.g. in ATLAS) probably need to avoid quench

![](_page_17_Figure_7.jpeg)

![](_page_17_Picture_8.jpeg)

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

### Results to date: Where are we, where do we need to go?

Present cavity performance is already easily good enough for rebuncher; need to resolve Q-slope for future accelerator cryomodules

- Q at low-mid field is high: Much higher than for niobium, R<sub>s</sub>=7 nΩ at 4.5 K
- ATLAS Rebuncher: Needs 0.3-0.5 MV → this performance is easily sufficient → high confidence for cavity #2
- Future accelerator cryomodules: Need to improve Q-slope
  - Extending flat region of present curve already good
  - Even better to raise  $Q_o$  at the same time
- At minimum two important issues will be addressed for 2<sup>nd</sup> cavity: Plastic deformation and contamination

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

![](_page_18_Figure_8.jpeg)

![](_page_18_Picture_9.jpeg)

![](_page_18_Picture_10.jpeg)

### Plans: Installing a niobium-tin coated cavity in ATLAS

A rebuncher in the middle of the ATLAS provides a large benefit for high intensity beams (N=126 factory) with moderate cavity requirements

- Test bed: Among the first real use of a niobium-tin coated cavity
- Existing infrastructure: Hardware re-use provides some cost reduction
- 10-Watt cryocooler: Design will include compatibility with this device
- FY2024 goal: Develop 145 MHz niobium-tin coated cavity course tuned for ATLAS
  - Module modifications support by ATLAS AIP
- Challenges: Slow tuning due to brittle nature of Nb<sub>3</sub>Sn
  - Ferroelectric tuner

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

 Squeezing as normal but within elastic limits

![](_page_19_Figure_10.jpeg)

![](_page_19_Picture_11.jpeg)

![](_page_19_Picture_12.jpeg)

## Plans: Completing work on 2<sup>nd</sup> cavity at RadiaBeam

The 2<sup>nd</sup> cavity will include at least a couple of modifications based on experience with the 1<sup>st</sup> cavity

1<sup>st</sup> cavity used blind tapped holes Y a possible source of contaminants

![](_page_20_Picture_3.jpeg)

### To do list:

- Removal of blind tapped holes: Eliminate possible source of contamination
- Reinforcing gussets: Need a stiffener plate at both top and bottom of cavity
- Housing and center conductor spool: Needed to lower frequency of 2<sup>nd</sup> cavity to 145 MHz

These two ports need a reinforcing gusset not present in the 1<sup>st</sup> cavity!

![](_page_20_Picture_9.jpeg)

2<sup>nd</sup> components at RadiaBeam

![](_page_20_Picture_11.jpeg)

RadiaBeam removing blind holes on all 6 ports

![](_page_20_Picture_13.jpeg)

RadiaBeam

![](_page_20_Picture_14.jpeg)

### Plans: A cryocooler test bed at RadiaBeam

![](_page_21_Picture_1.jpeg)

22

A flexible multi-purpose test bed suitable for the new GM-JT cryocooler from Sumitomo

![](_page_21_Picture_3.jpeg)

![](_page_21_Picture_6.jpeg)

### **Summary and Plans**

- The ANL, FNAL, RadiaBeam team has coated a low-beta niobium quarter-wave cavity with Nb<sub>3</sub>Sn for the first time: Performance clearly and significantly exceeds what could be achieved with niobium at this frequency
- Three rounds of testing complete on first cavity: Consistent performance in latest two tests after addressing cryogenics issues → We will begin process of re-coating this cavity (strip and reelectropolish, add gusset and re-coat)
  - Aim is to retest 1<sup>st</sup> cavity by 3<sup>rd</sup> quarter FY24
- 10-Watt cryocooler: A lot of testing already at Sumitomo, additional testing with more realistic cryostat set up will take place at RadiaBeam
  - I will request to have this at RadiaBeam in 2<sup>nd</sup> quarter FY24
- The second cavity will be tuned to 145 MHz to match ATLAS
  - Welding of niobium parts 2<sup>nd</sup> quarter FY24
  - EP and coating in the 3rd quarter
- The team will continue to set aggressive goals to advance Nb<sub>3</sub>Sn for low-beta cavities
  - The centerpiece of this is to complete the 2<sup>nd</sup> cavity such that it is ready for ATLAS
  - Our optimism that this will lead to transformative change for low-beta has only increased based on work and results of these last 3 years

![](_page_22_Picture_12.jpeg)

![](_page_22_Picture_14.jpeg)

### Backup

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_2.jpeg)

### Thoughts on future of Nb<sub>3</sub>Sn and low beta

- The rebuncher cryomodule: best available way to vet practical subsystems needed to run these cavities in a larger more demanding accelerating cryomodule
- Beyond that, a two-cavity energy adjustment cryomodule: for "ATLAS Area II" dovetails nicely with the ATLAS Multi-user Upgrade
  - An aggressive but reasonable goal on a two year timescale would be demonstration of the cavities at gradient
  - Cryomodule would be by AIP
  - Strongly considering testing a "superstructure assembly" → cavities joined in cleanroom at the ports
  - Considering demountable helium vessel → permits rework without cutting off an expensive and complicated vessel
- A beautiful application would be niobium-tin for a "bunch lengthening cryomodule" → this could be BES funded/supported work
- Toward a full cryomodule → Sweet spot for niobium tin and low beta could be ~300 MHz where cavities are coffee can sized
  - A larger superstructure of four cavities would be ~1 meter long, provide high real estate gradient, small transverse size and still be practical from a cleaning handling standpoint

![](_page_24_Picture_10.jpeg)

![](_page_24_Picture_11.jpeg)

![](_page_24_Picture_12.jpeg)