

Development of a MARS superconducting cold mass for future generations of ECRIS

P. Ferracin

Lawrence Berkeley National Laboratory

2023 NP Accelerator R&D PI Exchange Meeting December 7th, 2023

- 88-inch Cyclotron, NS Division, LBNL
 - Brian Bell, Janilee Benitez, Patrick Coleman, Jaime Cruz Duran, Larry Phair, Roman Nieto, Nathan Seidman, Damon Todd, Daniel Xie, Lianrong Xu, Sean Zhong
- Superconducting Magnet Program, ATAP Division, LBNL
 - Jose Ferradas Troitino, Mariusz Juchno, Soren Prestemon, Matt Reynolds, Jose Luis Rudeiros Fernandez, James Swanson, Chet Spencer, Ye Yang

- Introduction: description and goals of the project
- MARS cold mass design
- Project status
- Annual budget
- Project deliverables and schedule

- Produce a plasma from which we extract an ion beam
- Plasma is confined using sextupole and solenoid magnets
- Currently, 3rd generation sources, like VENUS and FRIB, use superconducting magnets
 - Frequency of 28 GHz

12/07/2023

Office of

- Solenoid field up to 4T
- Sextupole field up to 2 T

Introduction Goal of the project

 Design, fabricate, and test the cold mass of the 4th generation ECR Ion Source MARS capable of reaching a magnetic field that satisfies 45 GHz operation

- Introduction: description and goals of the project
- MARS cold mass design
- Project status
- Annual budget
- Project deliverables and schedule

MARS cold mass design Magnetic design

- Requirements for a 45 GHz operation
 - Solenoidal field: 5.7 T 1.2 T 2.9 T
 - Sextupole field: 3 T at 94 mm

MARS cold mass design Magnetic design: different options

Solenoid in sextupole

SECRAL

MARS

Sextupole in solenoid VENUS FRIB

U.S. DEPARTMENT OF

MARS cold mass design Magnetic design

- MARS advantages
 - Efficient magnetic design (sextupole ends contribute to the axial field) →
 - Possibility of reaching 45 GHz with Nb-Ti conductor
 - Similar load-line margin (10-15%) at 45 GHz as FRIB/VENUS configuration at 28 GHz
 - MARS would meet VENUS/FRIB performance with a very safe 40% margin
 - Electro-magnetic forces on the sextupole coil ends face outwards, both axially and radially
 - In VENUS/FRIB alternating end forces between coils
- MARS challenges
 - "Single" sextupole coil
 - Long fabrication process, "one-shot" type of condition

MARS cold mass design Mechanical design

- Bladder and key support structure
 - Three main component surrounding the coils
 - Iron pad iron yoke aluminum shell
 - Room temperature pre-load provided with waterpressurized bladders
 - Additional pre-load provided during cool-down

Synergy with HEP - LHC luminosity upgrade MQXF quadrupole example

- Introduction: description and goals of the project
- MARS cold mass design
- Project status
- Annual budget
- Project deliverables and schedule

Office of

12/07/2023

Project status updates FY23 first quarter

- Review of previous work
 - 2016 copper coil winding and impregnation

- Review of magnetic requirements for 45 GHz operation
- Conceptual design of the cold mass and tooling
 - Coil and structure design, magnetics, mechanics

Project status updates FY23 second quarter

- Internal review of the cold mass design
 - Committee
 - Gianluca Sabbi, Chair
 - Diego Arbelaez, Adrian Hodgkinson, Claude Lyneis, Tengming Shen, Jim Swanson
 - Recommendations
 - Define magnetic parameters
 - Perform quench protection analysis
 - Check conductor with bending radius
 - *"Consideration should be given to performing additional test windings before launching the labor-intensive fabrication of the production coil."*
- Decision to fabricate practice coil as risk mitigation strategy

Project status updates FY23 second quarter

- Tooling preparation for practice winding
 - Final mandrel, but small pole for 4-layer practice coil
- Conductor bending test
 - No broken filaments observed

Project status updates FY23 third quarter

- Mechanical analysis
 - Investigation of stress in coils and mandrels
- Tooling development
 - To guarantee correct positioning of sextupole turns
- Winding practice coil

Project status updates FY23 fourth quarter

- Quench protection and test analysis
- Definition of requirements
 - Maximum temperature < 200K
 - Maximum external voltage < 80 V @ external resistor for lead protection
 - Maximum to-ground voltage < 500 V
 - Maximum coil internal voltage < 1.5kV
 - No damage on the diode
 - Peak power < 130 kW

12/07/2023

Office of

- No damage on the mechanical structure by eddy current effect
- Definition of protection scheme to meet requirements

Ites	Unit					Value							
Wire	-	MbT:	i monolithic	wire			NbT1 monol	ithic wire					
Bare width			1.84				1.	36					
Bare thickness	nen.		1.16				e.	65					
Insulated width	190		1.91				1.	45					
Insulated thickness	-		1.23				e.	71					
Cu ratio	-		1.5				1	.4					
Filament diameter	LUN .		88				3	9					
RRR			99				. 7	9					
Coil name	-	sext1	sext2	sext5	inj_in	inj_out	comb	middle	extr1	extr2			
R0	80	118	127.5	145	130.1	159.5	181.2	181.2	181.2	181.2			_
R1	1940	127.5	145	159.5	159.5	200.5	200.5	280.5	288.5	200.5			
28	nen.				- 578	- 378	-150	-40	88	298		-000 -	
Z1	80				-288	-288	-90	49	148	268			
height, dR	80	17.5	17.5	14.5	29.4	41	19.3	19.3	19.3	19.3		_	
width, dZ	nn.	79.1	79.1	79.1	98	98	60	50	60	60			
Coil cross section	men ²	1384.25	1384.25	1145.95	2646	3698	1158	1544	1158	1158			
Layen		8	8	7	38	53	25	25	25	25			
Turns per løyer		63	6.5	63	61	61	48	54	40	40			
Total turns	-	584	584	441	2518	3233	1000	1350	1000	1999			
nductor filling factor	-	85.5%	85.5%	90.3%	90.2%	90.2%	88.9%	98.8%	88.9%	88.9%			
Packing factor		77.7%	77.7%	82.1%	77.4%	77.5%	76.3%	77.3%	75.3%	75.3%			
Gap per layer	nn.	0.278	0.275	0.161	0.054	0.054	0.052	0.062	0.062	0.062			
Gap per turm	80	0.026	0.026	0.026	0.025	0.025	8.858	0.031	0.050	0.050			
Operating current	A	353.7	538.6	530.6	95.2	257.6	257.6	-155.2	214.7	214.7			
Circuit	-	A		8	c	1		E		-			
Current density	A/em ²	128.78978	193.18938	284.01455	81.64686	225.73174	222.48785	-133.95078	185.48587	185.48587			
Superconducting]	A/mm ²	381.1	571.8	571.8	253.0	699.5	699.5	-415.9	582.9	582.9			
Max. field	T	8.36	7.75	7.01	7.96	6.82	5.01	5.01	5.57	4.22			
Load ratio (4.2K)	-	98.5%	87.9%	89.6%	84.1%	81.2%	73.2%	57.8%	66.5%	46.4%			
Tcs	K	4.68	4.88	5.15	5.00	5.12	5.50	6.21	5.81	6.71			-
Te	ĸ	5.04	5.35	5.78	5.24	5.79	6.15	6.58	6.34	6.91			
24	A/em ²	889.379	1192.9	1566.09	1885.89	1664.61	2087.6	2645.65	2329.73	3132.59			
Iop/Ic	-	0.433	8.479	0.365	0.233	8.428	0.335	0.157	0.250	0.185			
Coil volume	m ¹	4.53E-03	4.662-83	4.79E-83	4.53E-83	4,13E-83	1.3/E-83	1.83E-03	1.37E-03	1.37E-03			
Wire length	kan	1.65	1.78	1.84	3.97	3.61	1.19	1.68	1.19	1.19	17.94		
strand volume		3.88E-03	3.99E-83	4,33E-83	4.09E-03	3.72E-83	1.22E-83	1.65E-03	1.Z2E-03	1.22E-03	2.53E-82		
superconductor volume	8'	1.532-05	1.582-83	1.712-83	1.465-03	1.332-03	4.372-04	5.89E-04	4.37E-04	4.37E-04	9.512-85		
NQE	μ3	7,47	7.87	13.09	5.68	4.88	5.95	12.42	8.21	11.98			
Integral axial force	kN	-128.52	-257.08	-258.88	135.02	448.75	-589.11	18.25	279.44	-8.99	-143.09		
Stored energy	k3					711.17							
Binj	T					5.74							
Bwid	T					1.26							
Bext	T					2.94							
Br at 94mm	T					3.84							

MARS-D (45GHz) Design Parameters

Project status updates FY23 fourth quarter

Completion of practice coil and cut to check impregnation

.S. DEPARTMENT OF

U.S. DEPARTMENT OF Office of Science

 \bigcirc

Project status updates FY23 fourth quarter

Completion of practice coil and cut to check impregnation

- As additional risk mitigation strategy
 - Fabrication of the solenoids in house and after the sextupole coil fabrication
 - Machining of the solenoid mandrel finalized once sextupole coil completed

- More in general, excellent collaboration between NSD and ATAP team, at all levels
 - Conceptual design, analysis, fabrication....

- Introduction
 - ECR Ion sources
 - Description and goal of the projects
- MARS Cold mass design
- Project status
- Annual budget
- Project deliverables and schedule

Ø

Annual budget

	FY23	FY24	Total
Funds allocated	999	999	1998
Actual cost to date	668	101*	769*

*As of November 1st

- Introduction: description and goals of the project
- MARS cold mass design
- Project status
- Annual budget
- Project deliverables and schedule

Project deliverables and schedule (within the allocated funds)

Date	Deliverable			
	Completion of the winding of the sextupole coil			
October 2024	Engineering design of solenoid and support structure			
	Fabrication of solenoid mandrel and support structure			
November 2024	Completion (impregnation) of sextupole coil			
March 2025	Completion fabrication of solenoid coil			

12/07/2023

Thank you

 U.S. DEPARTMENT OF
 Office of

 Science
 12/07/2023

NSD	FY23	FY24	Total
Funds allocated	526	549	1075
Actual cost to date	508	58*	566
ΑΤΑΡ	FY23	FY24	Total
ATAP Funds allocated	FY23 473	FY24 450	Total 923

*As of November 1st

 U.S. DEPARTMENT OF
 Office of

 Science
 12/07/2023