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Today’s Presentations

1. Overview, 5’
- Ming Liu (LANL)/Gunther Roland(MIT)/Nhan Tran(FNAL)/ Dantong Yu (NJIT)/Callie 
Hao (GIT)

2. Physics simulation and AI-ML algorithms, 10’ 
- Dantong Yu (NJIT)/Giogian Borca-Tascuiuc(NJIT)/Cameron Dean(MIT)/Zhaozhong
Shi(LANL) /Hang Qi(MIT)/Hao-Ren Jheng(MIT)/Beilei Jiang(NTU)/Pan Li(GaTech)

3. HLS4ML and firmware implementation, 8’ 
- Hannah Bossi (MIT)/Jovan Mitrevski(FNAL)/Nhan Tran(FNAL)/Phil Harris(MIT)/Calli 
Hao (GaTech)

4. Demonstrator implementation, 7’ 
- Jakub Kvapil (LANL)/Yasser Corrales(MIT)/Noah Wuerfel(LANL)/Jo 

Schambach(ORNL)/Kai Chen(CCNU)/Lang Lei(CCNU)/Beilei Jiang(NTU)

Q & A: 5’

12/05/2023 Fast-ML Status and Plan @DOE Presentations 2



Overview 
- Ming Liu (LANL)
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sPHENIX at RHIC

2015 NSAC Long Range Plan for Nuclear 
Science priority: sPHENIX Experiment at RHIC

• Probe the inner workings of QGP by resolving its 
properties at shorter and shorter length scales

• Complementary to LHC experiments to study 
relativistic heavy-ion collisions 

Heavy Quark physics – a key pillar of RHIC science   
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Data Taking: 2023 - 2025



Project Goals and Deliverables: 
- Heavy flavor event AI-trigger demonstrator in p+p

12/05/2023 Fast-ML Status and Plan @DOE Presentations 5

Task 2Task 4

Task 1

Task 3

Selective streaming real-time AI and autonomous detector control:
Deliver a demonstrator for p+p and p+A running for sPHENIX - generalizable for 
applications in experiments at the EIC

4 interconnected key tasks:
Constraints:

MVTX data rate = 300 kHz
INTT data rate = 9.4 MHz

Trigger latency = 10μs



Leadership and Technical Roles 
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New teams joined later in 2022/2023:
- Dr. Jo Schambach, ORNL, sPHENIX/EIC readout integration, sPHENIX MVTX and EIC/ePIC readout lead
- Dr. Kai Chen, CCNU, FELIX-AI-Trigger hardware  integration, FELIX developer at BNL for ATLAS, also sPHENIX
- Prof. Song Fu, NTU, data acceleration in ML
- Prof. Callie Hao, GaTech, AI algorithm/Firmware in ML 

Team of NP + HEP + CS/EE



Technical Approaches and Highlights - I
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Jakub

sPHENIX MVTX and INTT 
full simulations of p+p collision

Convert simulated hits to sPHENIX real data 
like bit-stream to feed FPGA/AI

FastML Demonstrator setup at BNL 
sPHENIX DAQ rack room, summer 2023 

-AMD Linux server 
-FELIX-712, 182
-VC709 (FELIX-709)

summer students setting up the FELIX 
server in sPHENIX, 2023



Technical Approaches and Highlights - II
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Dantong

Graph Track 
Reconstruction

Displaced Vertex 
Reconstruction

Track Momentum Regression

Trigger Decision (HF 
identification)

Silicon Pixel Hits

Labelled Track Hits Displaced Vertices

Reconstructed Track Momentum

Trigger

AI Algorithm block

GNN

Bipartite



Technical Approaches and Highlights - III
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Also manual model implementation with primary focus: 
- achieving low latency
- real-time processing of data
- deployment of algorithms with high efficiency 

Hannah/Jovan



Successes and Challenges  
• sPHENIX status 

- installed and commissioned in summer 2023
- Run23 ended prematurely due to accelerator hardware failure
- delayed FastML-sPHENIX DAQ integration 

- MVTX installed on time and partially commissioned 
- successfully took cosmic ray data with other sPHENIX detectors (INTT, TPOT, TPC)
- successfully commissioned SRO

- INTT installed and partially commissioned 
- successfully took data with other subsystems (MBD, TPOT) in triggered mode
- successfully demonstrated SRO 

- Run 2024 will start  ~March, 2024
- Au+Au and p+p
- DAQ and AI-Trigger integration 

• Work in progress and challenges
- improve algorithms

- optimize FPGA resource usage 
- MVTX and INTT SRO integration into FPGA/AI-Trigger

- sPHENIX DAQ system integration

- Beam backgrounds

- remote computer/hardware access for non-sPHENIX collaborators
- demonstrator setup in sPHENIX at BNL
- setup a standalone at MIT for small testings and development 

• Summary of expenditures
- total budget, $1,500K (FY22-FY23), arrived late in 2022;
- no-cost extension
- Stage-II project funded, $1,600K (FY24-25), funding received
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A cosmic event seen by 
MVTX and INTT (and TPC)

TPC

sPHENIX in 2023

MVTX

INTT
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Electron Tagging - DIS Event Identification

Network
Switch

Buffer Box

EBDC
DA
MDCMDCMDCMFEB

RDO

Online 
Data Filter 

& Monitoring

Monitoring

O(10 Tbps) O(0.5 Tbps) O(0.1 Tbps)O(2 Pbps)

ePIC

Timing 
System

Detector 
Control

SRO + AI/ML Fast Data Processing:
- DIS e-tagger: event ID 

+ other rare process, HF-tagger etc. …

Selective streaming readout for AI-Engine:
• tag DIS-electron to define DIS event ID

o EMCal + Trker + PID
• tag other rare must-keep physics signals

o HF with Trker etc.

e-tagger + Evt-ID

Adaptive 
Learning
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Summary and Outlook
• Produced full sPHENIX physics and detector simulations of 

heavy quark and QCD backgrounds
• Successfully developed preliminary AI-algorithms for sPHENIX

HF triggers
• sPHENIX installed and commissioned in summer 2023

o Completed MVTX SRO 
o Demonstrated INTT SRO

• Successfully implemented a toy AI-algorithm in HLS4ML in 
FELIX 

• Work in progress to implement full sPHENIX HF AI-trigger in a 
simplified hardware

Future plan:
• Implement the demonstrator for sPHENIX p+p run in 2024
• Further develop EIC/ePIC SRO with AI/ML for EIC CD2(2025) and 

CD3(2025) based on our work
• Funded to continue R&D in FY24-25
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Note: completed; in progress
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Physics 
simulation and 

AI-ML algorithms 

- Dantong Yu and Giorgian Borca-Tasciuc (NJIT)
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Progress
• Robustness and Algorithm 

Accuracy Improvement

• Latency Improvements in 
Tracking Algorithm

• Track-Based Trigger Prediction 
Algorithm

• Hits-Based Trigger Prediction 
Algorithm

• Pileup Handling

• Robustness Verification

14

Set Encoder with Bipartite Aggregator (SEBA) Blocks
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Robustness: Data Augmentation
• Hits belonging to a track are perturbed to different points on the 

particle’s trajectory

• Model learns more general classification function based on trajectory 
instead of fixed layer locations

• Helps improve both robustness and final accuracy

• Robust to detector alignment. 
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Robustness: 
- Multi-Task Learning in Trigger Prediction
• Multi-Task Learning: Track embeddings used to predict whether two 

tracks come from the same parent particle
o Additional adjacency-matrix component added to the loss function:
o ℒ = LCE(triggerpred, triggertrue) + LCE(Apred, Atrue)

• Regularize the model with additional physical structural information 
about the event.
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Algorithm Accuracy Improvements

17

● Applying previous techniques, accuracy for both ground truth and 
predicted tracks (fully end-to-end) improved.  Improved Model (in 
Bold) v.s.  the old model in italic without data augmentation. 
○ +3.7% for GT Tracks 
○ +2.5% for predicted tracks
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Data Year Accuracy Efficiency Purity BRR

GT Tracks 2023 90.2% 96.1% 6.20% 85.4%

Predicted Tracks (also 
includes tightened 
constraints)

2023 86.5% 92.6% 4.62% 80.7%

Predicted Tracks 2022 84.0% - -

GT Tracks 2022 87.5% - -

Note: predicted probability cutoff of 
0.5 is used for efficiency/purity, and 
accuracy calculations



Efficiency/BRR with ROC
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Efficiency/Purity Under 1% Signal Rate
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Latency Improvements in Tracking Algorithm

• Geometric constraints are used to determine edge 
candidates for tracking algorithm

• Latency-Accuracy tradeoff exists:
o Permissive geometric constraints allow more true 

edges to be captured in the edge candidate 
set→Improves Accuracy

o Restrictive geometric constraints reduces the number 
of edge candidates → Improves Latency

• Run experiments to determine effect of geometric 
constraints on final trigger performance, 
assuming a perfect tracking algorithm

• We can reduce the maximum edge candidates by 
~50% with little accuracy penalty

2012/05/2023 Fast-ML Status and Plan @DOE Presentations



Hits-Based Trigger Prediction Algorithm

• Co-design means trade-off between accuracy and latency. If we skip the tracking 
and directly predict trigger from hit graph, we will significantly reduce the latency 
and cost on FPGA acceleration. 

• Implemented End-To-End trigger pipeline that removes intermediate tracking step
• Some performance loss, but large improvement in parameter count and latency

21

Input Type Parameter Count Accuracy

Single-Event Hits 776 72.58%
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Pileup Handling

• As-implemented, tracking and trigger algorithm need to deal with 
pile-up

• retrain the tracking algorithm with the hits of 20 MVTX events and 1 
INTT events. Target is the tracks of the single event within the INTT. 

• Tracking algorithm takes the 20 events and produces the tracks from 
a single event

• Use 20-event pile-up, determine end-to-end accuracy
• We achieve an end-to-end accuracy of 78%. Less than a <10% 

reduction in accuracy despite a large increase the complexity of the 
problem 
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Robustness Verification with Explainable AI

• Ensure our trigger models are making decisions on 
a physically-sound basis and thus will work outside 
the simulation

• Use Bernoulli LRI technique (bLRI) to probe which 
tracks the model is using to make decisions
o Model is penalized for not dropping tracks, thus it will 

only keep tracks important to the final decisions

• For both end-to-end and ground-truth tracking 
models, the model chooses to drop non-trigger 
tracks and keep trigger tracks: physically sound!
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hls4ml translation and 
firmware implementation

- Hannah Bossi (MIT) and Jovan Mitrevski (FNAL)
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Model Implementation on FPGA

25

● Task: Take TrackGNN (implemented with PyG) to put on FPGA with minimized latency
○ Use approach within FPGA and latency constraints ( < 10 us)
○ Measured end-to-end on FPGA board (as opposed to simulation)

● Approach # 1: Manual approach for model instance based on FlowGNN
(https://arxiv.org/pdf/2204.13103.pdf) 
○ Synthesizable C++ via High Level Synthesis (HLS): translate the Pytorch model 

into C++ without pointers, recursive, or dynamic memory
○ Optimized C++ in HLS: apply hardware optimization techniques to reduce 

execution latency and resource usage
● Approach #2: Automated firmware generation with hls4ml

○ Python package for machine learning inference on FPGAs
○ Recent progress to implement GNNs in hls4ml

12/05/2023 Fast-ML Status and Plan @DOE Presentations

https://arxiv.org/pdf/2204.13103.pdf
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Detailed Solutions – Implementation 1

• TrackGNN model
o 5 layers; node/edge embedding MLP: 64 dimensions, 4 layers

• Implementation Results
o Tested with: 100 nodes, 140 edges
o 150 us per graph (Freq. 130 MHz)
o 130 us per graph (Freq. 180 MHz)

• Utilization (Alveo U280)
o LUT: 308K (23.7%), FF: 378K (14.5%)
o BRAM: 1,025 (50.8%), DSP: 1,426 (15.8%)
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Detailed Solutions – Implementation 1

• TrackGNN model
o 5 layers; node/edge embedding MLP: 64 dimension, 4 layers

● Implementation Results
o Tested with: 100 nodes, 140 edges
o 150 us per graph (Freq. 130 MHz)
o 130 us per graph (Freq. 180 MHz)

●Utilization (Alveo U280)
o LUT: 308K (23.7%), FF: 378K (14.5%)
o BRAM: 1,025 (50.8%), DSP: 1,426 (15.8%)
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★ Too slow!! Target is < 10 us
★ Hardware has almost reached its 

maximum capability
★ Needs to redesign the algorithm

Fast-ML Status and Plan @DOE Presentations



Detailed Solutions – Implementation 2

• Simplified TrackGNN model by software team
o 1 layers; node/edge embedding MLP: 8 dimension, 4 layers

• Implementation Results
o Tested with: 92 nodes, 142 edges
o 8.82 us per graph (Freq. 285 MHz)
o 14.7x speedup!

• Utilization (Alveo U280)
o LUT: 194K (14.9%), FF: 214K (8.2%) 
o DSP: 488 (5.4%), BRAM: 406 (20.2%) 
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Detailed Solutions – Implementation 2

• Simplified TrackGNN model by software team
o 1 layers; node/edge embedding MLP: 8 dimension, 4 layers

● Implementation Results
o Tested with: 92 nodes, 142 edges
o 8.82 us per graph (Freq. 285 MHz)
o 14.7x speedup!

●Utilization (Alveo U280)
o LUT: 194K (14.9%), FF: 214K (8.2%) 
o DSP: 488 (5.4%), BRAM: 406 (20.2%) 
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★ Smaller model improves both 
latency (14.7x) and clock 
frequency (1.58x)

★ More aggressive quantization is 
expected to be helpful
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Detailed Solutions – Tracking + Triggering

• Trigger model is needed to be included, following TrackGNN
o The latency limit is still 10 us but TrackGNN itself is already 8.82 us

• Algorithm innovation: combined tracking and triggering
o Modified TrackGNN + graph level aggregation for triggering

• Implementation Results
o Tested with: 92 nodes, 142 edges
o 9.2 us per graph (Freq. 180 MHz) → still within 10 us!

• Utilization (Alveo U280)
o LUT: 241K (18.5%), FF: 236K (9.04%), DSP: 969 (10.7%), BRAM: 594 (29.5%) 
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Firmware Implementation with hls4ml at a Glance

31

https://arxiv.org/pdf/2112.02048.pdf

hls4ml is a compiler taking AI models in TF/Keras, PyTorch, or 
ONNX, producing HLS for deployment on FPGAs and ASICs.

https://fastmachinelearning.org/hls4ml/
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hls4ml for Real-time AI Deployment

• Origin:  to deploy neural networks in the Level-1 trigger on the CMS 
Experiment at the Large Hadron Collider (LHC) at CERN

• Widely used open source software
o GitHub: https://github.com/fastmachinelearning/hls4ml
o 950+ stars, 350+ forks, 45+ contributors, almost 30k PyPI downloads

• Experienced hls4ml developers are part of this effort, including  
Nhan Tran, Philip Harris, Vladimir Lončar, Jovan Mitrevski
o Can extend the software to suit the needs of the project
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GNN Implementation in hls4ml

33

● Graphs are natural representations for physics purposes - shows data 
points (nodes) and the relation between them (edges). 
○ Ex: charged particle tracking

● To fully realize GNNs for tracking, need implementation on FPGA due to 
strict latency constraints

● Common software used is pytorch 
geometric (PyG) - first step is to 
implement prototype for PyG model 

● Already some progress towards this end! 
● See slides from London workshop for 

more details
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Preliminary Results

34

● Preliminary benchmark! 
● Network inputs:  90 nodes, 140 edges (same as simplified TrackGNN)

● Input network: 
○ Latency ~ 0.2 us

● Edge network
○ Latency ~ 0.7 us

● Node network
○ fine estimation not yet done
○ Latency ~ 4 us

● Total latency estimation
○ latency = input_network + layers * (edge_network + node_network + ~overhead) + 

edge_network = 0.2 + 1*(0.7+4.0 + ~0.1) + 0.7 ~ 5.7 us (approximately)

Repeat for each layer
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Demonstrator 
Implementation 

- Jakub Kvapil (LANL)
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sPHENIX Readout and AI-ML HF Trigger Integration  
On Detector Rack Room

DCMDCMDCMDCM2

SEB

SEB

Buffer Box

Buffer Box

Buffer Box

Buffer Box

Buffer Box

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM SEB

EBDCFELIX

EBDCFELIX

EBDCFELIX
Buffer Box

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

To Computing Centre 
100+ Gigabit

Crossbar
Switch

FELIX (MVTX+INTT) -> AI/ML -> Trigger

Front-End Module/Electronics
Data Collection Module
• Zero suppress, packing

SubEvent Buffer 
(x20)
• Data collector

EBDC: Event Buffer and Data Compressor (x40)
• 6x MVTX, 8x INTT, 24x TPC

~ 1 PB each
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• The Global Level 1 Trigger (GL1) and the accelerator clock is distributed via 
Granule Timing Module (GTM)
o GL1 trigger is used by calorimeters and the TPC
o GL1 transmits clock and trigger to the vGTM, which then transmits it to the FEE

▪ vGTM is the adapter to a given detector
▪ GL1 is maintaining the BUSY received from vGTM

The timing and trigger distribution

FEEFEEFEE
FELIXFELIXFELIX

Trigger Inputs
• Up to 4 LEMO and  

4 fibers
• oHCAL, MBD, EMC, 

iHCAL, sEPD, ZDC

Granule
Granule

LL1

GL1

Machine clock

BUSY

GL1
Granule

vGTM FEMFEMFEM
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The Latency Constraints for the Trigger Delivery
• The TPC buffers can hold up to 30 μs of data
o The goal of this project is to aim for 10 μs collision-trigger latency to capture the TPC 

stream

• The Calorimeter buffers can hold up to 6.4 μs of data
o Can we improve the latency down to 5 μs to also capture the calorimeter stream?

• The latency breakdown
1. MVTX readout window 5 μs – not fixed interaction-readout latency!
2. IR -> Counting house ~ 0.3 μs (81 m fibres) 
3. FELIX -> AI data forward, decoder buffers, clustering ~ 0.6 μs (@240 MHz) 
4. Tracking + Trigger decision (currently 8.82 μs for TrackGNN model!)
5. AI -> GTM -> TPC FELIX (negligible, all three sits in Counting house)
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The DAQ–AI Data Flow
• Motivation to use FELIX board:
o Use the sPHENIX FELIX infrastructure provided to the sPHENIX tracking detectors
o To reuse the PCIe implementation (16-lane Gen-3) and software tools provided by the 

FELIX developers 
o Large amount of optical IO, on-board FPGA is a Kintex Ultrascale XCKU115FLVF1924-2E 

(half the size of Alveo)
• The decision signal of heavy flavor event from the AI-Engine will be sent out via the LEMO 

connectors to the sPHENIX GTM/GL1 system to initiate the TPC readout in the triggered 
mode

• MVTX Readout FELIX Firmware is the best starting point -> could even lighten it more by 
removing MVTX data processing

Post-Implementation LUT (663K) FF (1.3M) BRAM (2K)

MVTX Readout FELIX 87K (13.1%) 196K (14.8%) 879 (40%)
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The Firmware Design - Data Flow

DAQ board

AI Engine

Felix-712

Felix-712

MVTX
INTT RX

TX

RX

TX

LEMO

Trigger decision

10 Gbps

3.2 Gbps

Decoder

MUX

Silicon 
detectors 
data

DE
M
U
X

Processing

Clusteriser

NN IP

PCIe

PCIe MonitoringFF

Very challenging project to fit in the FPGA resources!

● MVTX 144 links @ 3.2 Gbps and INTT raw 
data stream will feed two AI engines (one for 
each hemisphere)

○ 24 links for MVTX and 24 links for INTT 
per AI engine

○ 8b10b protocol with links driven @ 
10Gbps

■ tested up to 14 Gbps, with external 
loopback measurement at FELIX 
with BER < 10^(-16)

● Raw MVTX and INTT data packets:
○ 1 MVTX packet @5 us strobe

■ ~10 pp collisions (MB events) 
@2MHz pp collisions

○ 50 INTT packets @ 100 ns strobe
■ Need to run GraphGNN 50 times!

● Data needs to be decoded, clustered, time 
aligned and feed the neural network IP
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MVTX Decoder

• Initial implementation of the FPGA-based MVTX decoder
• Max 128 hits per chip stored (expected physics ~50, issues with beam background?)

o Maximum latency 532 ns @ 240 MHz (given by the buffer depth)
• The MVTX data latency depends on the actual collision time and hit occupancy

o To provide a fixed latency to the GTM a BC information from INTT is used
o An interrupts to event size/processing time are in place not so exceed the maximum latency

▪ Separate memory per MVTX event to fast clear the data
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MVTX Decoder - Implementation
• First implementation based on simulation and synthesis data

LUT (663K) FF (1.3M) BRAM 
(2K)

Needed

Readout decoder (RDH DEC) 431 701 0 per stave (x24)

Chip Memory 37 34 1 per chip (x216), per event (x2)

Chip decoder (ALPIDE DEC) 677 252 0 per chip (x216)

Hit (pixel) memory 39 38 0.5 per chip (x216), per event (x2)

Total 189K (28.5%) 102K (7.7%) 648 (30%)

● Latency
○ RDH decoder is data distributor = only 1 clock latency (4.16 ns @ 240 MHz)
○ CHIP decoder has read-to-pixel latency of 6 cycles (25 ns @ 240 MHz), total latency depends on 

occupancy -> 2-3 cycles per pixel. It is expected to have around 50 pixels =  0.5 us
● Utilization

○ A bit high, we still need to fit in the FELIX infrastructure, INTT decoder, and model
○ The above design is fully parallelised, could reuse decoders and memory at the cost of latency
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MVTX Clusterizer
● ALPIDE reads data out in double columns from 0 to 1023

○ Decoded hits thus arrive double column-by-double column
● Clusters can be assembled as they arrive

○ No hits in the next columns three adjacent pixels means cluster is 
ready to be sent out

● After finding pixel with centroid, pixel can be divided into 
grids to improve resolution using only 2 more bits

● Can get 13.5 μm cluster resolution at the global level from 
31 bits
○ 6 bits to define layer and sensor number
○ 4 bits to define chip number on the sensor
○ 21 bits for cluster position on chip (9 for row, 10 for column, 2 for 

quadrant)
● After changing to global cluster position, detector layout has 

become abstracted
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MVTX Clusterizer - WIP Results
● Preliminary results show good agreement 

between sPHENIX algorithm and our mock 
FPGA code.

● Good validation that algorithm logic is 
working, next step is to translate to VHDL
○ vitis hls can be used for this! 
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Outlook and Timeline

• Assemble each components together and iterate until FPGA resources and timing is met
• Integrate MVTX and INTT SRO

o MVTX will be re-installed at sPHENIX in February
o First beam expected in March - time to test

• Project funded 
by DOE FOA

• Initial 
simulations 
constructed

• First data for 
algorithm 
training 

• Initial FPGA 
bitstream 
synthesis

• Refine 
interface 
between 
system and 
detectors

• Deploy device 
at sPHENIX
pp/pA run

• EIC 
preliminary  
TDR (CD2)

• Final design 
for EIC TDR 
(CD3)

• Take 
advantage of 
new 
technology if 
required

• Deploy device 
at EIC

We are here!

2021 2022 2023 2024
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Backup Slides
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EIC Preliminary Scope Overview

(ESR)

(HSR)

RHIC

EIC

New systems include:
• Polarized electron source,
• Injector linac, 
• Electron cooler complex,
• Rapid Cycling Synchrotron(RCS) 
• Electron storage ring (ESR),
• Interaction region (IR) with 1 

detector,
• Capability for implementing 2 IRs
• Infrastructure improvements.

Current plan has the RHIC facility shutting 
down in 2025 and being modified for the EIC.  
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AI engine - half 
barrel 

DAQ board

RX

TX

RX

TX

PCIe
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(RM5)
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any
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