Deep Learning for Germanium-Based Neutrinoless Double-Beta Decay Searches

Julieta Gruszko NP AI/ML PI Exchange Meeting December 5, 2023

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

- Neutrinoless Double-Beta Decay in ⁷⁶Ge
- ML-Assisted Simulations
 - Electronics Emulation and Validation (K. Bhimani, N. Gray, N. O'briant)
- ML-Enhanced Analysis Tools
 - Semi-Autonomous Data Cleaning (E. Leon, A. Bahena Schott)
 - LEGEND Baseline Model with Feature Importance Supervision (A. Li, K. Kilgus)
 - Other projects:
 - Self-supervised learning (A. Li)
 - Interpretable BDT for LEGEND Characterization (H. Nachman)
 - MAJORANA DEMONSTRATOR Data Release (A. Li)
 - Creating a Co-56 Training Data Set (G. Duran)

From Beta Decay to Double Beta Decay

From $2\nu\beta\beta$ to $0\nu\beta\beta$

Double Beta Decay:

 $2n \rightarrow 2p + 2e^{-} + 2\overline{\nu_e}$

Standard Model Physics Neutrinoless Double Beta Decay:

New Physics!

Why Neutrinoless Double Beta Decay?

- The discovery of 0vββ decay would dramatically revise our foundational understanding of physics and the cosmos
 - Lepton number is not conserved
 - The neutrino is a fundamental Majorana particle
 - There is a potential path for understanding the matter antimatter asymmetry in the cosmos, through leptogenesis
 - There is a new mechanism demonstrated for the generation of mass
- The search for $0\nu\beta\beta$ decay is one of the most compelling and exciting challenges in all of contemporary physics
- ⁷⁶Ge-based searches have proven very successful in searching for this ultra-rare process

The Ονββ Signal

Designing for Unambiguous Discovery

- What is required for a discovery of 0vββ decay?
- Long half-lives mean you need large exposures. For 3-4 counts of 0vββ at...
 - 10²⁶ years: 100 kg-years
 - 10²⁷ years: 1 ton-year
 - 10²⁸ years: 10 ton-years
- Need a good signal-to-background ratio to get statistical significance
 - A very low background event rate
 - The best possible energy resolution

Simulated LEGEND-1000 example spectrum for $T_{1/2} = 10^{28}$ yrs, BI < 10⁻⁵ cts/keV kg yr, after cuts, from 10 years of data

At every stage, 0vββ searches in ⁷⁶Ge are designed for unambiguous discovery: their goal is quasi-background free operation for their full exposure

From the Current Generation to the Ton Scale

Germanium Detector Innovation

Materials from the GERDA and MAJORANA Collaborations

Julieta Gruszko

Echange 2023

AI/ML PI

| ML for Ge $0\nu\beta\beta$

Background Rejection in Point Contact Detectors

$Ov\beta\beta$ signal candidate (single-site)

y-background (multi-site)

External α , β , and y backgrounds all create distinctive pulse shapes, allowing for highly efficient $\beta\beta$ decay event selection

Surface background on n+ contact

Surface background on p+ contact

2023

Energy and Pulse Shape Parameter Calibration

11

Echange

Δ

Σ

 $\overline{\triangleleft}$

for

Z

Gruszko

Implications for AI/ML

- Granular Detectors + Low Backgrounds
 - ightarrow Low rate of physics events (< 1 Hz per detector)
 - ightarrow Noise-induced events can make up a large fraction of triggered waveforms

 \rightarrow Allows time-intensive analysis of final waveforms, but algorithms should also run on much larger calibration data sets to confirm signal acceptance rate and stability

"Traditional" pulse-shape parameters perform quite well for background rejection
 → Build network structures that improve on existing pulse-shape parameters or leverage signal
 physics knowledge

 \rightarrow Use AI/ML for tasks other than signal/background event classification

• Discovery could be claimed based on as few as 3 events

ightarrow Analysis interpretability is key

Project Goals and Team

- Overall goal: improve scalability and capabilities of analysis methods for the Majorana Demonstrator and LEGEND using ML tools
 - Reduce detector-by-detector and run-by-run calibration steps
 - Enable near-real-time analysis of commissioning data
 - Develop methods to use more information from the waveform shape to improve background modeling and rejection
- 5 projects within these goals:
 - Interpretable Boosted Decision Tree for MJD and LEGEND
 - Semi-autonomous Data Cleaning for LEGEND-200
 - Electronics Response Emulation and Removal for LEGEND
 - Self-supervised Learning for Waveform Classification in LEGEND
 - Build Local High Powered Computer for Algorithm Prototyping
 - Create ML Validation and Training Data Set with Co-56

A. Li, Former Postdoc (now UCSD faculty)

- K. Bhimani, PhD Student
 - G. Duran, PhD Student
- K. Kilgus, Visiting PhD Student

Undergraduate researchers: H. Nachman, A. Bahena Schott, N. Gray, N. O'briant

Group Demographics:

5/10 women

5/10 Hispanic or African Am.

Germanium Machine Learning (GeM) Group

Leverage efficient and interpretable AI to aid all aspects of LEGEND analysis and simulation Lay groundwork for constructing an independent AI analysis chain Leverage resources to educate domestic and international collaborators to gain AI experience

ML-Assisted Simulations

Electronics Emulation: Motivation

- Pulse-shape simulations based on detector response are quite advanced, but are not being used regularly for background modeling due to difficulties in modeling electronics chain response
- Fitting-based approach for MJD proved unfeasible:
 - Requires highly-degenerate detector-dependent 12parameter fit
 - Instability in electronics causes changes over time, requiring repeated fits
- Emulating electronics would allow for:
 - Improved modeling of PSD performance and systematics
 - Improved L1000 detector and ASIC design
 - Position reconstruction inside the detectors
- True electronics deconvolution would improve performance of PSD

LEGEND 200 readout electronics (idealized)

Electronics Emulation: Goals

- Two requirements:
 - Preserve underlying topology and position information: multi-site vs. single-site, surface effects, position in detector
 - Reproduce key waveform features, initially tested by studying ensemble distributions such as decay tail, baseline noise and current amplitude distribution

Electronics Emulation: Network Design

- Cycle-GAN provides a solution for how to train 1-to-1 correspondence without knowing simulation/data pairs
- Forwards and backwards directions trained simultaneously
- 1D U-Net chosen as initial generator model, but moreinterpretable models will be tested in the future
- Added positional encoding maps inspired by Transformer model
- Discriminator is an RNN with an attention mechanism (LEGEND Baseline Model) that has been demonstrated in a variety of waveform discrimination tasks

Electronics Emulation: Network Design

- Cycle-GAN provides a solution for how to train 1-to-1 correspondence without knowing simulation/data pairs
- Forwards and backwards directions trained simultaneously
- 1D U-Net chosen as initial generator model, but moreinterpretable models will be tested in the future
- Added positional encoding maps inspired by Transformer model
- Discriminator is an RNN with an attention mechanism (LEGEND Baseline Model) that has been demonstrated in a variety of waveform discrimination tasks

With electronics response

Electronics Emulation: Training

- Proof of concept based on Th-228 calibrations of a BEGe detector at UNC
- Detector hits generated in Geant4 simulation; waveforms simulated with Siggen ٠
- Training consist of updating weights of two generators and two discriminators using data and simulated pulses ٠
- Trained on 90k Full energy peak events (FEP): combination of single- and multi-site •
- Validated on 27k single escape peak events (SEP): primarily multi-site •

2023

Echange

Electronics Emulation: Training Results on FEP

Echange 2023 Julieta Gruszko | ML for Ge $0\nu\beta\beta$ | AI/ML PI

Electronics Emulation: Results

- The model learns to translate the flat tail of simulations into an exponential decay
- Distribution of waveforms amplitude slows to move towards the data (low-pass filter effect)
- Mismatch in current amplitude distributions seems to be an issue with the simulation geometry and settings: simulation is over-predicting multi-site population in low-current peak
- Next steps: switch to using LEGEND characterization data, with lower backgrounds and bettermeasured geometry; test behavior with pre-applied basic single-component decay

Technical paper published as part of the NeurIPS 2022 Workshop on Machine Learning in the Physical Sciences: "Ad-hoc Pulse Shape Simulation using Cyclic Positional U-Net"; received MLST Best Paper Award https://ml4physicalsciences.github.io/2022/

Electronics Emulation: Method Validation Studies

- Two validation studies underway by undergraduates:
 - Pure Simulation Method: model basic electronics chain in LTSpice, apply to simulated waveform dataset; test if network is able to reproduce behavior correctly
 - Dummy Detector Method: build dummy detector and readout circuit, measure response using network analyzer; use waveform generator to create dataset and test if network is able to reproduce behavior correctly
- Future validation study (2023 renewal): test using positionlabeled ICPC data from novel Compton scanner

ML-Enhanced Analysis Tools

Semi-Autonomous Data Cleaning: Motivation

Advantages over traditional data cleaning:

- Adapts to changing run conditions
- Allows ID of new populations during commissioning
- Flexible framework can be used for detector characterization measurements in addition to LEGEND-200
- Could improve separability by using more waveform information

Unsupervised learning = **no labels** prior to training Supervised learning = **labels available** prior to training

Semi-Autonomous Data Cleaning: Network Design

- Extract relevant pulse shape information using wavelet decomposition, normalize waveforms
- Use unsupervised Affinity Propagation to cluster training set waveforms and produce exemplars
- User studies exemplars and provides labels, used to train
 Support Vector Machine (SVM) that draws boundaries between categories
- All other data is labeled using SVM

Comparison to Traditional Data Cleaning Cuts

*Traditional data cleaning cuts defined for > 25 keV events -> compare using a dataset of physics data with a 25 keV threshold

AP-SVM Cut: Keep only events tagged as Normal (0) or Slow Rise (6)

Sample Waveform Confusion Matrix

Semi-Autonomous Data Cleaning: Sacrifice Study

Semi-Autonomous Data Cleaning: An Experiment-Agnostic Model

LBM with Feature Importance Supervision: Motivation

• LEGEND Baseline Model (LBM) goal: make an interpretable multi-purpose model for waveform analysis and classification tasks

- Feature Importance Supervision: allow user to add physics knowledge to LBM
 - Additional loss functions tell network what information should be useful in task, encourages network to ignore irrelevant information

Project conducted by visiting PhD student K. Kilgus from University of Tübingen, supported by award from Reinhard Frank-Stiftung Foundation

LEGEND Baseline Model: Network Design

- LEGEND Baseline Model: RNN used to process waveform data, with attention mechanism allowing network to "zoom in" on relevant information for the specific task
- Attention scores allow interpretability of results
- A danger of the LBM: waveforms are normalized, but baseline noise contains energy information. Training with signal-like and background-like peaks in spectrum can lead to bias

LBM with Feature Importance Supervision: Network Design

- FIS forces model to be accurate when given only important features, and appropriately uncertain/invariant given only unimportant ones
- First test: multi-site event rejection and energy dependence

Method adapted from Z. Ying, P. Hase, and M. Bansal, NeurIPS 2022, arXiv:2206.11212

Add all together

 \mathbf{m}

202

Echange

Ы

AI/ML

Ονββ

9 O

| ML for

Gruszko

Julieta (

LBM with Feature Importance Supervision: Results

- DEP and SEP: test multi-site rejection
 - RNN + FIS outperforms traditional method and CNN + FIS method
- Compton continuum: test energy bias of classifier
 - Networks with FIS eliminate bias of LGB

LBM with Feature Importance Supervision: Results

- Calibration spectrum after cuts shows that energy-dependent behavior of LGB is corrected and that LGB+FIS performs similarly to traditional method
- Next steps: testing models with varying attention targets, varying applications
- Also underway: PSD tools for LEGEND coaxial detectors based on LGB+FIS

Other Projects

- Self-supervised learning on waveforms:
 - Tool has been developed and is available; for the moment, used primarily for data exploration
- Boosted Decision Tree analysis method and interpretability study:
 - Published analysis on full Majorana Demonstrator dataset 0vββ search: PRL 107, 014321 (2023)
 - H. Nachman's senior thesis was a study of applying this method to LEGEND-200 rapid detector characterization; method is ready for final L-200 detector characterization campaign in Spring 2024
- MAJORANA DEMONSTRATOR data release:
 - Tagged single-site and multi-site calibration waveform data released for AI/ML tool development, information available on arXiv: <u>https://arxiv.org/abs/2308.10856</u>
- Co-56 training/validation data set:
 - LBM-FIS study shows that energy bias from limited training samples using Th-228 peaks can be significant, so we're prioritizing rapid deployment of Co-56 in LEGEND-200 and UNC LAr test stand
 - PhD student G. Duran is conducting simulation studies of needed source strength in UNC LAr test stand, source deployment expected in January 2024

Year	2022				2023				2024 Personnel	
Quarter	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	
Dates	11/30/21 - 1/1/22	1/1/22-4/1/22	4/1/22 - 7/1/22	7/1/22 - 10/1/22	10/1/22 - 1/1/23	1/1/23 - 4/1/23	4/1/23 - 7/1/23	7/1/23 - 10/1/23	10/1/23 - 11/30/23	
Task 1a: BDT for MJD	Complete BDT framework	Write internal technical document	Complete internal technical review	Submit and publish paper						Aobo Li
			Begin BDT analysis of L-200 commissioning	Present early	Present results at APS DNP Meeting , Complete internal technical	Complete internal technical review , Incorporate into analysis chain.	Publish first LEGEND-200 results, including			Henry Nachman,
Task 1b: BDT for LEGEND			data	results internally	document		BDT analysis			Aobo Li
Task 2: Data Cleaning	Begin testing		Complete	results, Incorporate into analysis	Write technical	Publish technica				Fetaban Loon
TASK 2. Data Cleaning	Hantework		TIAITIEWOIK	Indifiework	рарег	рарег			Publish LEGEND-	
Task 3: Electronics Emulation			Begin framework	Write and publish technical paper		Publish physics paper using test data	Implement for analysis and pulse shape simulations	Provide recommendations for LEGEND-1000	200 background model, incorporating emulation	Aobo Li, Kevin Bhimani, Julieta Gruszko
Task 4: High-Powered Computer					Order components	Receive components	Complete assembly and setup			Aobo Li, Julieta Gruszko, E. Leon
Task 5: Semi-/Self-Supervised Learning		Build network structure					Begin tests of SSI on pulse shape simulations	Integrate data- driven and simulations-based networks.		Esteban Leon, Aobo Li, Julieta Gruszko

	FY21 (\$k)	FY22 (\$k)	Totals (\$k)
Funds allocated	226	224	450
Actual costs to date	215	211	13

Acknowledgements

- LEGEND
- This material is based on work supported by U.S. Department of Energy, Office of Science, Office of Nuclear Physics under award number DE-SC0022339. This work was performed in part at the Aspen Center for Physics, which is supported by National Science Foundation grant PHY-1607611.
- We appreciate the support of our sponsors:
 - German Federal Ministry for Education and Research (BMBF)
 - German Research Foundation (DFG), Excellence Cluster ORIGINS
 - German Max Planck Society (MPG)
 - South Dakota Board of Regents
 - U.S. National Science Foundation, Nuclear Physics (NSF)
 - U.S. Department of Energy, Office of Nuclear Physics (DOE-NP)
 - U.S. Department of Energy, Through the PNNL, LANL, ORNL & LBNL LDRD programs
 - Italian Instituto Nazionale di Fisica Nucleare (INFN)
 - Swiss National Science Foundation (SNF)
 - Polish National Science Centre (NCN)
 - Foundation for Polish Science
 - Russian Foundation for Basic Research (RFBR)
 - Research Council of Canada, Natural Sciences and Engineering
 - Canada Foundation for Innovation, John R. Evans Leaders Fund
 - European Research Council
 - Science and Technology Facilities Council, part of UK Research and Innovation
- We thank our hosts and colleagues at LNGS and SURF, and we thank SNOLAB for their engineering support in LEGEND-1000 planning
- We thank the ORNL Leadership Computing Facility and the LBNL NERSC Center

 \mathbf{m}

LEGEND Collaboration

Mission: The collaboration aims to develop a phased, Ge-76 based double-beta decay experimental program with discovery potential at a half-life beyond 10²⁸ years, using existing resources as appropriate to expedite physics results.

CIEMAT

Comenius Univ. Czech Tech. Univ. Prague and IEAP Daresbury Lab. Duke Univ. and TUNL Gran Sasso Science Inst. Indiana Univ. Bloomington Inst. Nucl. Res. Rus. Acad. Sci. Jagiellonian Univ. Joint Inst. for Nucl. Res. Joint Res. Centre Geel Lab. Naz. Gran Sasso Lancaster Univ. Leibniz Inst. for Crystal Growth Leibniz Inst. for Polymer Research Los Alamos Natl. Lab. Max Planck Inst. for Nucl. Phy. Max Planck Inst. for Physics Natl. Res. Center Kurchatov Inst. Natl. Res. Nucl. Univ. MEPhI North Carolina State Univ. Oak Ridge Natl. Lab. Polytech. Univ. of Milan Princeton Univ. Queen's Univ. Roma Tre Univ. and INFN Simon Fraser Univ. SNOLAB South Dakota Mines Tech. Univ. Dresden Tech. Univ. Munich Tennessee Tech. Univ. Univ. of California and LBNL Univ. of California and LBNL Univ. of California and LBNL Univ. of California and INFN Univ. of Cagliari and INFN Univ. of Cagliari and INFN Univ. of Houston Univ. of Liverpool Univ. of Milan and INFN Univ. of Milano Bicocca and INFN Univ. of New Mexico Univ. of North Carolina at Chapel Univ. of Padova and INFN Univ. of Regina Univ. of South Carolina Univ. of South Dakota Univ. of Tennessee Univ. of Texas at Austin Univ. of Tuebingen Univ. of Warwick Univ. of Warwick Univ. of Washington and CENPA Univ. of Zurich Williams College

tal GrowthSNOLABUniv. of North Carolina at Chapel Hill~270 members from 55 institutions across 12 countries

Extra Slides

Pulse Shape Analysis with Recurrent Neural Networks (L. Paudel): A Preview

- Using the full MAJORANA
 DEMONSTRATOR dataset, search for
 isomeric gamma transitions to study
 rare cosmogenic decays; use ML to
 extract decay energies and timing
- Also study whether traditional multi-site rejection can be improved with ML
- RNN used to process waveform data, with attention mechanism allowing network to "zoom in" on relevant information for the specific task
- Showing good results in both classification and pile-up parameter extraction

L1000 Design Optimization (A. Schuetz): A Preview

- L1000 has a potential cosmogenic background from neutron activation of ⁷⁶Ge
- Simulations of this background are complex and make it computationally expensive to study potential neutron moderator configurations
- Instead, train emulator using a combination of fast low-fidelity simulations with slow high-fidelity simulations, using active learning Linear Multi-Fidelity Model Fit

Friday, 9:15 AM

A. Schuetz L08.00002 : Machine learning based design optimization for the search of neutrinoless double-beta decay with LEGEND

neutron

capture on ⁷⁶Ge

L1000 Design Optimization: Motivation

 L1000 has a potential cosmogenic background from neutron activation of ⁷⁶Ge

 Moderating neutrons increases probability of neutron capture in Ar active shield instead of Ge

Liquid

Argon

РММА

moderato

nane

- What is the optimal design for the neutron moderator panels?
 - Simulations are computationally expensive, with many free parameters
 - Instead, train an emulator to choose which combinations to simulate

L1000 Design Optimization: Network Design

Design 1: [Mod. Thickness, ...] \rightarrow Emulator \rightarrow ⁷⁷Ge Reduction efficiency Design 2: [Mod. Thickness, ...] \rightarrow Emulator \rightarrow ⁷⁷Ge Reduction efficiency

Bayesian Model with Multi-Fidelity

 Combine fast lowfidelity simulations with slow high-fidelity simulations

> simulation with 25k primary neutrons (~ 0.08 CPUh) simulation with 10⁷ primary muons (cosmic muon showers) (~200 CPUh)

• Gaussian process used for surrogate model

L1000 Design Optimization: Active Learning

Interpretable BDT: Motivation

Due to charge trapping and charge cloud diffusion in the detector bulk, traditional analysis parameters are often highly correlated: standard analysis fits the largest linear bi-variate correlations detector-by-detector and corrects for them

BDT method developed to...

- Utilize all the correlations to improve background reduction
- Reduce the need for additional targeted cuts like LQ
- Develop method for future experiments and rapid characterization
 - Reduce need for detector-by-detector calibration
 - Reduce need for run-by-run calibration
 - Address increased correlations in larger-mass detectors
- Leverage interpretability to learn from the machine Applied to full data set from the MAJORANA DEMONSTRATOR

Interpretable BDT: Network Design

 Boosted Decision Tree using traditional pulse shape analysis parameters, implemented in LightGBM

AVSE

DCR

• Two networks, using different training data sets:

DETECTOR

- MSBDT tags multi-site events, trained with ²²⁸Th calibration data

DRIFT TIME

- aBDT tags surface events, trained with background events from $0\nu\beta\beta$ runs; uses SMOTE-MC to augment data and create larger sample of training events
- Distribution matching performed for "non-primary" features

ISENRICHED

 Shapley value used to interpret network results and improve traditional analysis

NOISE

Interpretable BDT: Results

Interpretable BDT: Results

- Difference driven by late addition of new analysis parameter, which was not included in BDT
- Comparable result with far fewer person-hours! No detector-by-detector or run-by-run secondary calibration needed.
- Interpretability study shows that BDT has "discovered" known correlations between parameters
- Feeds back to improve traditional analysis: choose between similar parameters based on importance and implement new PSD based where BDT-outperforms
- Now being applied to LEGEND characterization data and exploring the use of lower-level parameters