

NP Artificial Intelligence Principal Investigators Exchange Meeting

December 05, 2023

Manouchehr Farkhondeh
DOE Office of Science, Nuclear Physics Program

Outline:

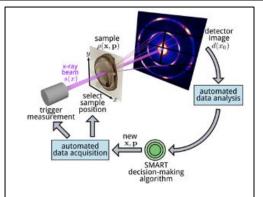
- ➤ This Meeting
- Overview of DOE-SC and NP AI/ML initiative
- > FY2020 Data, Al and ML Lab call and awards
- > FY2021 Data Analytics AI/ML FOA and awards
- > FY2023 Data, AI and ML FOA and Lab call
- ➤ PIER Plan Requirement for all FY2023 and beyond FOAs
- Communications and Presentation Guidelines

DOE SC Statement of Commitment

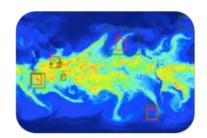
- The DOE SC Diversity, Equity and Inclusion webpage:
- https://science.energy.gov/sc-2/research-and-conduct-policies/diversity-equity-and-inclusion/
- "The DOE Office of Science (SC) is fully committed to fostering safe, diverse, equitable, and inclusive work, research, and funding environments that value mutual respect and personal integrity. Effective stewardship and promotion of diverse and inclusive workplaces that value and celebrate a diversity of people, ideas, cultures, and educational backgrounds is foundational to delivering on the SC mission. The scientific community engaged in SC-sponsored activities is expected to be respectful, ethical, and professional.
- The DOE SC does not tolerate discrimination or harassment of any kind, including <u>sexual or non-sexual harassment</u>, bullying, intimidation, violence, threats of violence, retaliation, or other disruptive behavior in the federal workplace, including DOE field site offices, or at national laboratories, scientific user facilities, academic institutions, other institutions that we fund, or other locations where activities that we support are carried out…"
- If you are subject to or witness harassment or discrimination, please contact any of the NP PM
 present or our Division Director. You can also visit the following:
 How to Report a Complaint | U.S. DOE Office of Science (SC) (osti.gov)

Artificial Intelligence in the Office of Science

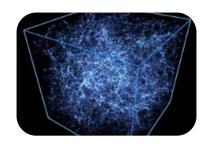
Al for User Facilities and Advanced Technology


- Optimize design of experiments and operations
- Enable real-time analysis and integrated workflows
- Predict and mitigate instrument and facility down time
- Increase particle beam availability to users through optimization of beam tuning and risk reduction in accelerator machine protection
- Create Self-driving instruments and experiments

Al for Science


- Accelerate scientific discovery through federated learning to gather broader insight via shared datasets
- Develop surrogate models for expensive or time constrained experiments
- Make sense of multi-modal, noisy data
- Reduce time for complex scientific instrument calibration

Al Tools


- Incorporate uncertainty quantification and domain-knowledge
- Increase robustness, interpretability and repeatability
- Develop new storage and archival tools to make data FAIR (Findable, Accessible, Interoperable, and Reusable)
- Develop privacy-preserving algorithms for use of AI in edge devices and to support biopreparedness research efforts

Autonomous experiments

Deep learning for extreme weather events

Analyze relationship between 10 billion galaxies in LSST

Overview of AI/ML initiative

- Artificial Intelligence (AI) represents a paradigm shift for scientific high-performance computing. DOE
 and the Office of Science (SC) recognize the power that AI will have to accelerate progress in scientific
 research and missions by developing new data analysis tools and integrating data focused approaches
 with our physics-based computer simulations.
- Al is one of the current initiatives for SC with focused efforts and fundings.
- Nuclear Physics (NP) NP has been supporting applications of artificial neural networks in the
 analysis of nuclear physics data for decades. Current and planned NP facilities and scientific
 instrumentation face a variety of technical challenges in simulations, control, data acquisition, and
 analysis.
 - January 2020: A roundtable NP meeting of experts was convened to discuss AI/ML techniques focused on improving efficiencies of accelerator and detector operations.
 - March 2020: An NP community workshop at TJNAF considered priority research opportunities in Al/ML.
- In FY2020 NP participated in a three SC program offices (BES,HEP and NP) Lab only funding opportunity call in Data science and AI/ML for SC accelerator and detector facilities.
- NP has published an NP only funding opportunity (FOA) in FY2021 and one for FY2023-24 funding.
- An SC AI/ML working group with representation from all five SC Programs meets bi-weekly to discuss developments and coordination. I represent NP in this working group.

NP Lab Al-ML proposals Lab-20-2261

- This was a SC Laboratory call from BES, HEP and NP allowing 2 proposals per user facilities.
- NP received 3 proposals in accelerators and 2 in experiments and detectors, a total of 5 Proposals

PI Name	SC Lab	Proposal Title	FY 2020 Award (\$K)	Total Award (\$K)
David Lawrence	TJNAF	A.I. Assisted Experiment Control and Calibration		
Christopher Tennant	TJNAF	AI for Improved SRF Operation at CEBAF		
Brahim Mustapha	ANL	Use of Artificial Intelligence to Optimize Accelerator Operations and Improve Machine Performance		
		Total (\$K)	1,000	3,000

- ➤ Funding in Year-1 came from accelerator R&D base funds (total of \$1M / year).
- ➤ These were 3 –year awards, FY20-22 funding
- Last three talks today are on these award works

Outline:

- > This Meeting
- > Overview of DOE-SC and NP AI/ML initiative
- > FY2020 Data, Al and ML Lab call and awards
- > FY2021 Data Analytics AI/ML FOA and awards
- > FY2023 Data, Al and ML FOA and Lab call
- ➤ A new Requirement for all FY2023 and beyond FOAs
- > Communications and Presentation Guidelines

NP AI/ML FOA DE-FOA-0002490

FY2021

Today's first 6 talks are on awards for this FOA

DEPARTMENT OF ENERGY
OFFICE OF SCIENCE
NUCLEAR PHYSICS

DATA ANALYTICS FOR AUTONOMOUS OPTIMIZATION AND CONTROL OF ACCELERATORS AND DETECTORS

FUNDING OPPORTUNITY ANNOUNCEMENT (FOA) NUMBER: DE-FOA-0002490

> ANNOUNCEMENT TYPE: INITIAL CFDA NUMBER: 81,049

FOA Issue Date:	DATE: March 16, 2021
Submission Deadline for Applications:	DATE: April 30, 2021, 11:59 PM Eastern Time

Awards: NP AI/ML FY2021 DE-FOA-0002490 (subject of this meeting)

	Awards fo	Awards for NP FY2021 FOA on Data Analytics and SC_FOA_0002490					
Award #	Institution	Proposal Title	Principal Investigator				
1	MIT	Intelligent experiments through real-time AI: Fast Data Processing and Autonomous Detector Control for sPHENIX and future EIC detectors	Roland, Gunther				
	NJIT FNAL		Yu, Dantong Tran, Nhan				
	LANL	Lead Institution	Liu, Ming Xiong				
2	UNC	Deep Learning for Germanium-Based Neutrinoless Double Beta Decay Searches	Gruszko, Julieta				
3	LBNL	Machine Learning Optimization Upstream and Downstream of the Accelerator: The Cases of VENUS and GRETA	Crawford, Heather				
4	LLNL	Al-driven detector design for the EIC	Angerami, Aaron				
	UC, Riverside	Lead Institution	Arratia, Miguel				
	LBNL		Nachman, Benjamin				
5	ANL- ATLAS	Autonomous Optimization of the Secondary Beam Production and Delivery at the ATLAS In-Flight Facility	Hoffman, Calem				
6	ANL-ATLAS	Modern Data Analytics for the Large Gamma-Ray Spectrometers: GRETINA/GRETA and Gammasphere via Machine Learning and Optimization	Carpenter, Michael				
		Total 2-year Awards (\$k)	5,680				

Outline:

- > This Meeting
- > Overview of DOE-SC and NP AI/ML initiative
- > FY2020 Data, Al and ML Lab call and awards
- > FY2021 Data Analytics AI/ML FOA and awards
- > FY2023 Data, AI and ML FOA and Lab call
- ➤ A new Requirement for all FY2023 and beyond FOAs
- > Communications and Presentation Guidelines

NP AI/ML FOA DE-FOA-0002875

FY2023

- FOA: DE-FOA-0002875
- Issue Date: Nov 9, 2022
- Proposals due: Jan 11, 2023
- No LOIs or preapplications

DEPARTMENT OF ENERGY (DOE)
OFFICE OF SCIENCE (SC)
NUCLEAR PHYSICS (NP)

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR AUTONOMOUS OPTIMIZATION AND CONTROL OF ACCELERATORS AND DETECTORS

> FUNDING OPPORTUNITY ANNOUNCEMENT (FOA) NUMBER: DE-FOA-0002875

> > FOA TYPE: INITIAL CFDA NUMBER: 81.049

FOA Issue Date:	November 9, 2022
Submission Deadline for Applications:	January 11, 2023, at 11:59 PM Eastern Time

FY 2023 NP AI/ML FOA- P1

General approach: Application of AI/ML tools and methods for experiments, simulation, theory and accelerator operation to expand scientific outreach Technical areas and scope for FY2023 FOA

- Efficiently extract critical and strategic information from large complex data sets,
- Address the challenges of autonomous control and experimentation,
- Efficiency of operation of accelerators and scientific instruments,
- ➤ Al for data reduction of large experimental data.

Application context and NP Major Projects

- Any proposed work that is not part of a current NP project including EIC can be submitted to this FOA.
- AI/ML for EIC application can be carefully drafted to ensure they would not overlap with approved EIC project scope. However, they can be related to enhancing scientific output of the EIC project.
- The above is also true about other major NP projects in Fundamental Symmetry or any other programmatic research areas of NP (Medium Energy, Heavy Ion, Nuclear Structure and nuclear astrophysics, etc.).

FY 2023 NP AI/ML FOA – P2

• Solicitation S&T Scope:

- Research focused on data for autonomous optimization and control of accelerators and detectors relevant to current- or next-generation NP accelerator facilities.
- Research on technical developments at the intersections between real-time machine learning and the control and optimization of accelerator systems operation and detector design using AI models

Program Planning/Context:

- Impart an acceleration of experimental and computational discovery by applying AI methods and techniques to address technical challenges in simulations, theory, control, data acquisition and analysis for NP accelerators and scientific instruments.
- Provides support consistent with FY 2023 budget language for targeted investments to develop cuttingedge techniques based on AI of relevance to nuclear science research and accelerator facility operations.

Application Requirements:

- Eligibility: Universities/colleges, non-profit/ small business as collaborators, DOE/NNSA laboratories only;
- Award size/duration: Up to \$1M/year; up to 2-year awards
- Funding by Fiscal Year: FY 2023 ~\$8M, FY 2024 up to \$8M subject to budget appropriation
- Preproposals: No Preproposals or Letters of Intent are required

NP AI/ML FY2023 DE-FOA-0002875 Statistics

Applications and Awards

A total of 15 independent awards

Fraction # of # of **Requests** Institutions Award (K\$) Fraction (%) Applications Awards (#) (K\$) 22 Laboratories 8 36% 9,600 Universities 16 44% 6,400 **Totals** 38 15 39% 47,200 16,000 34

Application/Award Types

Type of Proposal	Submitted	Awarded	Fraction (%)
Collaborative	16	7	44
Single PI	22	8	36
Totals	38	15	39.4

Application/Award Topics (note the diverse areas)

Proposal Topic	Submitted	Awarded	Fraction (%)
Accelerator	11	4	50
Detectors	8	4	50
Experiments + EIC	7 15	5	33
Theory	4	2	50
Totals	38	15	39.4

NP AI/ML FY2023 DE-FOA-0002875 Awards List-P1

Collaborations identified with same color rows. No significance to the choice of colors.

Award #	Topic Subj.	Institution	Project Title	PI and Co-PI
1 1	Detector, SPHENIX	LANL	Intelligent Experiments Through Real-time AI: Fast Data Processing and Autonomous Detector Control for sPHENIX and Future EIC Detectors	Liu, Ming
		FNAL		Tran, Nhan
		Georgia Tech		Hao, Cong
		MIT		Roland, Gunther
		NJIT, NJ		Yu, Dantong
		ORNL		Schambach, Jo
2	Accelerator		Machine Learning	Ostroumov, Peter Scheinker, Alexander
3	Detector ML	MSU	Machine Learning for Time Projection Chambers at FRIB	Wrede, Christopher
4	Experiment, LE		Modern Data Analytics for the Large Gamma-Ray Spectrometers: GRETINA/GRETA and Gammasphere via Machine Learning and Optimization - RENEWAL	
5	Experiment, LE	VSU, Petersburg, VA <mark>HBU</mark>	Neural network classifier for analyzing measurements of fast neutrons for invariant mass spectroscopy	Redpath, Thomas

NP AI/ML FY2023 DE-FOA-0002875 Awards List-P2

6	Experiment Al		New approaches to Bayesian uncertainty quantification for Nuclear Science	Jacobs, Peter
		Duke U		Mak, Simon
		Wayne SU, MI		Shen, Chun
7	Theory ML		STREAMLINE Collaboration: Machine Learning for Nuclear Many-Body Systems	Lee, Dean
		ANL		Lovato, Alessandro
		FNAL		Rocco, Noemi
		FSU		Piekarewicz, Jorge
		Ohio S U Columbus		Furnstahl, Richard
		Ohio U, Athens		Drischler, Christian
		ORNL		Hagen, Gaute
		UNC, Chapel Hill		Konig, Sebastian
		итк		Papenbrock, Thomas
8	Accelerator Al Op		Use of artificial intelligence to optimize accelerator operations and improve machine performance	Mustapha, Brahim
9	Theory, LQCD		EXCLAIM - EXCLusives via Artificial Intelligence and Machine learning	Liuti, Simonetta
		мѕи		Lin, Huey-Wen
		NMSU, New Mexico		Sievert, Matthew
		ODU		Li, Yaohang
		Tufts U		Goldstein, Gary
		V Pol I, Blacksburg, VA		Boer, Marie

NP AI/ML FY2023 DE-FOA-0002875 Awards List-P3

		1		1
10	Experiment ML	LBNL	Machine Learning Optimization: VENUS & GRETA	Crawford, Heather
11	Accelerator	TJNAF UVA subcon	Graph Learning for Efficient and Explainable Operation of Particle Accelerators	Tennant, Chris
12	Detector, FS	UNC, Chapel Hill	Interpretable Machine Learning for Germanium-Based Neutrinoless Double Beta Decay Searches	Gruszko, Julieta
13	Accelerator Pol.	BNL	Beam polarization increase in the BNL hadron injectors through physics-informed Bayesian Learning	Hoffstaetter, Georg
		Cornell		Hoffstaetter, Georg
		RPI, NY		Wang, Yinan
		SLAC		Edelen, Auralee
		TJNAF		Schram, Malachi
14	Detector	W&M	A Scalable and Distributed Al-assisted detector design for the EIC	Fanelli, Cristiano
		BNL		Wenaus, Torre
		Cath U		Horn, Tanja
		Duke U.		Vossen, Anselm G.
		TJNAF		Diefentahler, Markus
15	Experiment ME	TJNAF	AI/ML Optimized Polarization	Lawrence, David, Subcon with CMU and W&M
	\$16 M Funding cut off line			

Outline:

- > This Meeting
- > Overview of DOE-SC and NP AI/ML initiative
- > FY2020 Data, Al and ML Lab call and awards
- > FY2021 Data Analytics AI/ML FOA and awards
- > FY2023 Data, Al and ML FOA and Lab call
- ➤ PIER Plan Requirement for all FY2023 and beyond FOAs
- > Communications and Presentation Guidelines

ENERGY A new Requirement for FY 2023 SC FOAs

> A new Requirement for all FY2023 and beyond SC FOA applications:

- All new and renewal applications must provide a Promoting Inclusive and Equitable Research (PIER) Plan as an appendix to the research narrative.
- As a result, a new criteria (PIER) is added to the four existing SC Merit Review criteria
 - Scientific and/or Technical Merit of the Project;
 - Appropriateness of the Proposed Method or Approach;
 - Competency of Applicant's Personnel and Adequacy of Proposed Resources;
 - Reasonableness and Appropriateness of the Proposed Budget; and

Quality and Efficacy of the Promoting Inclusive and Equitable Research (PIER) Plan.

Link to SC website https://science.osti.gov/grants/Applicant-and-Awardee-Resources/PIER-Plans

> PIER Criterion Questions:

- Is the proposed Promoting Inclusive and Equitable Research (PIER) Plan suitable for the size and complexity of the proposed project and an integral component of the proposed project?
- To what extent is the PIER plan likely to lead to participation of individuals from diverse backgrounds, including individuals historically underrepresented in the research community?
- What aspects of the PIER plan are likely to contribute...

(PIER) Plans- Page 2

- The complexity and detail of PIER Plans are expected to increase with the size of the research team and the number of personnel supported.
- Applicants are encouraged to consider focusing on areas, including but not limited to:
 - The composition of the project team and partnering institutions.
 - The research environment—cultivating respectful, professional and accessible environments.
 - Equitable and inclusive implementation of the research project.

Additional information and FAQs: https://science.osti.gov/grants/Applicant-and-Awardee-Resources/PIER-Plans and https://science.osti.gov/grants/Applicant-and-Awardee-Resources/PIER-Plans/Q-and-As

Outline:

- > This Meeting
- > Overview of DOE-SC and NP AI/ML initiative
- > FY2020 Data, Al and ML Lab call and awards
- > FY2021 Data Analytics AI/ML FOA and awards
- > FY2023 Data, Al and ML FOA and Lab call
- ➤ A new Requirement for all FY2023 and beyond FOAs
- > Communications and Presentation Guidelines

Communications between NP and PI for AI/ML work

Two modes of communications between PIs and NP office: Quarterly reports and an annual meeting with all PI in one place.

- ➤ Quarterly Reports
 - PIs are asked to submit quarterly reports to NP in a "Small Project" format. Quarterly reports are reviewed by the Division (they are not just filed away). For FY2021 FOA awards Ms. Saryna Cameron has been requesting for these periodic reports.
- ➤ PI Exchange Meetings:
 - **Al/ML:** This is the first standalone annual NP Al/ML PI Exchange meeting, and we plan to have one yearly.

NP Matrix for Quarterly Report Review and PM Assessment.

Include brief and clear responses to these NP Matrix questions in your quarterly reports.

- ➤ NP matrix for Quarterly Report and progress assessment.
- Make sure your quarterly reports addresses elements of this matrix for our evaluation
- Continue to use the NP "small Project" template Ms. Saryna Camron sends you.

These questions are for the NP PM and your response are only part of the information I use to arrive at my own assessments.

1-	PI's performance during the quarter
а	Progress made
b	Milestones met
С	Any breakthrough
2-	Assessment of risk mitigation
а	Issue comunicated?
b	appropriate mitigation strategies
3-	Likelihood of achieving project goals
а	Will they meet cost and schedule
b	Will they deliver the promised scope
4-	Recommendation on need for action
_	Are there any actions you need to take
l a	in response to points above

PI Exchange Meeting, November 30, 2022

- Presentations on status of work by all Principal Investigators (PIs) who received awards
 - under FY 2021 FOA DE-FOA-0002490 for AI and Data Analytics
 - Under FY 2020 Lab call Lab-20-2261
- This is not a review, and no review panel is involved. Presentations
 will be made to NP Office Program Managers and Division Directors,
 and possibly a few PMs from HEP and BES Program Offices.
- To facilitate exchange of information between PIs and the NP Office and among PIs and institutions on all current NP AI/ML awards activities.

PI Meeting Presentation Guidelines:

Each presentation should include the following information:

- Description of the project and the current status;
- ➤ The main goal of the project for which you received the FY 2020- 22 AI/ML awards,
- A table showing annual budget and the total received to date (see below);
- A table showing major deliverables and schedule; and
- There will be no written report or follow up actions required for this meeting.
- Summary of expenditures by fiscal year (FY):
- All talks will be posted on PI Exchange meeting page on NP website.
- > 35 min talks should allow 7 min for Q/A and 30 min talks 5 min for Q/A

	Year 1	Year 2	Year 3	Totals
a) Funds allocated				
b) Actual costs to date				

FY2023 PI Meeting Agenda

	AGENDA: 2023 NP AI-ML PI Exchange Meeting, Tuesday, December 5, In-Person							
#	Time (E.S.T)	Dur. (min)	Principal Investigator	Institution	R&D Area	Presentation Title	Speaker(s)	
	9:00	5	-	DOE NP	-	Introductory Remarks	Mantica	
	9:05 AM	35	-	DOE NP	-	NP supported AI/ML	Farkhondeh	
		FY2020 La	b call awards in LAB	20-2261: "Da	ta, Artificial I	ntelligence and Machine Learning at DOE Scientific User Facilitie	es	
1	9:40 AM	35	Lawrence, David	TJNAF	Detectors	A.I. Assisted Experiment Control and Calibration	Lawrence	
2	10:15 AM	35	Tennant, Christopher	TJNAF	Accelerators	Al for Improved SRF Operation at CEBAF	Tennant	
	10:50 AM	20	Break					
3	11:10 AM	35	Mustapha, Brahim	ANL	Accelerator	Use of Artificial Intelligence to Optimize Accelerator Operation	Mustapha	
		FY2021 FC	OA and Lab call award	s: DE-FOA-00	02490 "Data	Analytics for Autonomous Optimization and Control"		
1	11:45 AM	35	Liu, Ming Xiong	LANL	Detectors	Intelligent experiments through real-time AI: Fast Data Processing and Autonomous Detector Control for sPHENIX and future EIC	Liu	
			Roland, Gunther	MIT				
			Yu, Dantong	NJIT				
			Tran, Nhan	FNAL				
2	12:20 PM	35	Gruszko, Julieta	UNC	Detectors	Deep Learning for Germanium-Based Neutrinoless Double Beta Decay Searches	Gruszko	
	12:55 PM	85	Lunch					
3	2:20 PM	35	Crawford, Heather	LBNL-88 inch	Accelerator	Machine Learning Optimization Upstream and Downstream of the Accelerator: The Cases of VENUS and GRETA	Crawford /Todd	
4	2:55 PM	35	Arratia, Miguel	UC, Divorcido	Detectors	Al-driven detector design for the EIC	Arratia	
			Nachman, Benjamin	LBNL				
			Angerami, Aaron	LLNL				
	3:30 PM	20	Break					
5	3:50 PM	35	Hoffman, Calem	ANL- ATLAS	Accelerator	Autonomous Optimization of the Secondary Beam Production and Delivery at the ATLAS In-Flight Facility	Hoffman	
6	4:25 PM	35	Carpenter, Michael	ANL-ATLAS	Detectors	Modern Data Analytics for the Large Gamma-Ray Spectrometers: GRETINA/GRETA and Gammasphere via Machine Learning and Optimization	Carpenter	
	5:00 PM	5				Closing Remarks		
	5:05 PM		Adjourn					

Acknowledgements of Federal Support For your award

Peer Reviewed Articles and Technical Papers

For peer reviewed and technical papers, the following acknowledgment of support is **required**:

For Financial Assistance (Grants, etc.):

Acknowledgment: "This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of [insert the sponsoring SC Program Office, e.g., Nuclear Physics], [Add any additional acknowledgements or information requested by the sponsoring SC Program Office] under Award Number(s) [Enter the award number(s)]."

Example: "This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of **Nuclear Physics** under Award Number DE-SC-000yyy."

For National Lab awards:

Example: "This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office Nuclear Physics program under Award Number DE-SC-000zzz.

Here is the link on Acknowledgment:

https://science.osti.gov/Funding-Opportunities/Acknowledgements

BACKUP Slides

FY2021 FOA: Data, Artificial Intelligence and Machine Learning

Solicitation S&T Scope: DE-FOA-0002490; issue date: March 16, 2021

Scope: The AI/ML for autonomous optimization and control of nuclear physics accelerators and detectors described in this FOA support efforts essential to developing leading core competencies and transformative technologies that significantly advance the state-of-the art AI and data analytics capabilities in accelerator science and nuclear physics research:

- Efficiently extract critical and strategic information from large complex data sets,
- Address the challenges of autonomous control and experimentation,
- Efficiency of operation of accelerators and scientific instruments,
- Al for data reduction of large experimental data.

Eligible Institutions: Universities/colleges, non-profit and small business as collaborators, DOE/NNSA laboratories only; New single- or multi-PI proposals.

Outcome of the FOA:

- Received 32 individual applications: 22 collaborative and single PI proposals
- A review panel helped NP to select 6 R&D projects (11 proposals)
- Total funding of \$5.68M over 2 years.

SC Al Lab Call Lab-20-2261 (Also, topic of this Exchange meeting)

DEPARTMENT OF ENERGY
OFFICE OF SCIENCE
BASIC ENERGY SCIENCES
HIGH ENERGY PHYSICS
NUCLEAR PHYSICS

DATA, ARTIFICIAL INTELLIGENCE, AND MACHINE LEARNING AT DOE SCIENTIFIC USER FACILITIES

DOE NATIONAL LABORATORY PROGRAM ANNOUNCEMENT NUMBER: LAB 20-2261

ANNOUNCEMENT TYPE: INITIAL

Announcement Issue Date:	March 9, 2020
Submission Deadline for Proposals:	May 1, 2020, at 5 PM Eastern Time

NP AI/ML FY2023 DE-FOA-0002875 Statistics

Applications				
and Awards				

A total of 15 independent awards

Application/Award Types

Application/Award Topics

Institutions	# of Applications	# of Awards	Fraction (#)	Requests (K\$)	Award (K\$)	Fraction (%)
Laboratories	22	8	36%		9,600	
Universities	16	7	44%		6,400	
Totals	38	15	39%	47,200	16,000	34

Type of Proposal	Submitted	Awarded	Fraction (%)
Collaborative	16	7	44
Single PI	22	8	36
Totals	38	15	39.4

Application Topic			
Accelerator	11	4	50
Detectors	8	4	50
Experiments + EIC	15	5	33
Theory	4	2	50
Total	38	15	39.4

M. Farkhondeh, 2023 NP AI/ML PI Exchange Meeting