
High Bandwidth Feedback Systems for a High Luminosity EIC

R. Rimmer Jefferson Lab, Newport News, VA

Z. Conway

BNL, Upton, NY

Supported by FY 2018-19 DoE NP FOA JLab and BNL Base R&D Funding

High Bandwidth Beam Feedback Systems for a High Luminosity Electron Ion Collider

Project description

- This proposal is to perform the key research and development required to make practical the production of transverse and longitudinal feedback systems capable of providing the high-bandwidth high-voltage feedback signals required for the future 3 A 12 GeV electron collider ring at the JLAB EIC (JLEIC). Having a large operating bandwidth, lower HOM impedance and better power handling will be the focus of these developments. This will create a robust solution which can be easily adapted to future JLEIC accelerator parameter changes and make developments here adaptable to different accelerators, like the Brookhaven National Laboratory (BNL) electron Relativistic Heavy-ion Collider (eRHiC).

Project status

- In progress (but delayed), details later in this presentation
- Main goal
 - Develop transverse feedback system and kickers for an EIC
- Supported by FY 2018-19 DoE NP FOA JLab and BNL Base R&D Funding
 (JLab cost codes JLECFF \$224k and JLCFF2 \$8k, ANL funded \$200k, requested \$400k)

Progress report

Slow start due to:

- FY17 project delay
 - (including a subcontract to DimTel to do high level system architecture)
- JLEIC design evolving to pre-CDR-65 and then pre-CDR-100
- Incomplete impedance budget for e-ring (still ongoing)
- Resource conflicts at both labs

Present status:

- Draft impedance budget and system concept (described in JLEIC pre-CDR)
- Preliminary specifications based on DimTel recommendations (draft report)
- Initial EM model of transverse kicker (based on ANL stripline)
- Concept for longitudinal kicker
- Half-time postdoc now on board

R&D Highlights:

- Impedance analysis
- Feedback System architecture
- Transverse kicker
- Longitudinal Kicker

Work left to do

R&D Highlights: Impedance analysis

- Ongoing refinement as designs mature
- High-count small impedances (e.g. bellows), and one-off high impedances (e.g. IR)
- Scale from other machines where undefined

e-ring

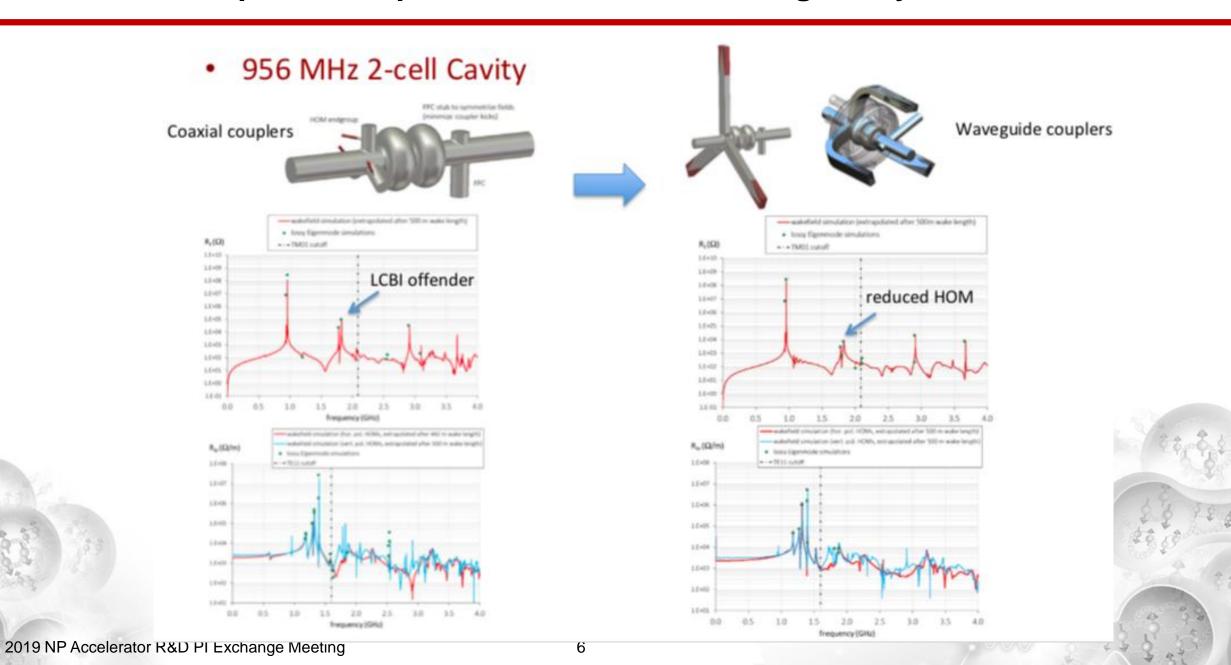
Component Counts (Courtesy to T. Michalski)

Elements	e-Ring
Flanges (pairs)	1215
BPMs	405
Vacuum ports	480
Bellows	480
Vacuum Valves	23
Tapers	6
Collimators	16
DIP screen slots	470
Crab cavities	2
RF cavities	32
RF valves	68
Feedback kickers	2
IR chamber	1

•	Impedance Estimation (Courtesy to K. Deitrick)								
	Broadband Impedance	Reference: PEP-II	Reference: SUPERKEKB						
	<i>L</i> [nH]	99.2	28.6						
	$\left Z_{_{ }}/n\right $ [Ω]	0.09	0.02	≤ 0.1 Ω					
	$k_{_{ }}$ [V/pC]	7.7	19						
	$\left Z_{_{\perp}} ight $ [k $\Omega/$ m]	60	13 ≤	$0.1 \mathrm{M}\Omega/m$					

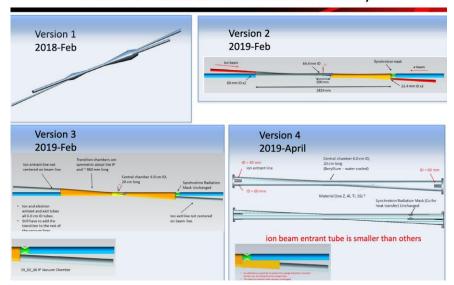
- JLEIC plans to use PEP-II vacuum systems
- Effective impedance is bunch length dependent

i-ring

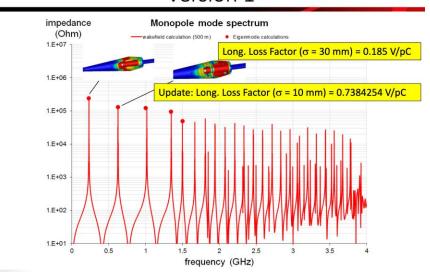

Component Counts (Courtesy to T. Michalski)

<u> </u>	
Elements	p-Ring
Flanges (pairs)	234
BPMs	214
Vacuum ports	92
Bellows	559
Vacuum Valves	14
Tapers	6
Collimators	16
DIP screen slots	-
Crab cavities	8
RF cavities	40
RF cavity bellows	40
RF valves	24
Feedback kickers	2
Roman Pot	2
IR chamber	1

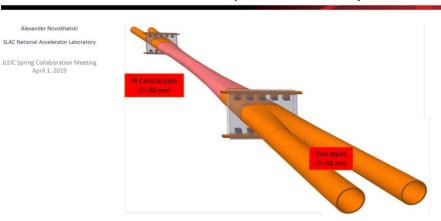
• Impedance Estimation (Courtesy to

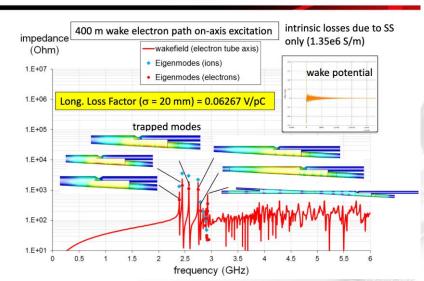

Broadband Impedance	Reference: PEP-II	(Courtesy to K. Deitrick)
<i>L</i> [nH]	97.6	
$\left Z_{_{ }}/n\right $ [Ω]	0.08	$\leq 0.1 \Omega$
$k_{_{ }}$ [V/pC]	8.6	
$\left Z_{\perp}\right $ [k Ω/m]	80	$\leq 0.1 \mathrm{M}\Omega/m$

- The short bunch length (1.0cm) at collision is unprecedented for the ion beams in existing ion rings
- Bunch length varies through the whole bunch formation process



Engineering Design vs. Narrowband Impedance Modeling


JLEIC IR Chamber Version History


Version 1

FCC IR Beam Pipe Geometry

Version 4

R&D Highlights: Feedback System architecture*

- Maximum bunch frequency $=F_{RF} = 476.3 \text{ MHz}$
- Transverse feedback (baseband)
 - \sim DC to F_{RF}/2 = \sim DC to 238 MHz
- Longitudinal Feedback (damped cavity)
 - Center frequency = $n*F_{RF} F_{bunch}/4$,
 - e.g. 1547 MHz, bandwidth ≥ 238 MHz

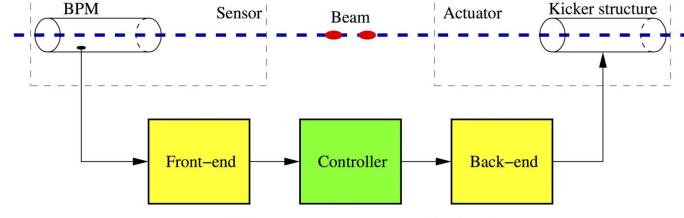
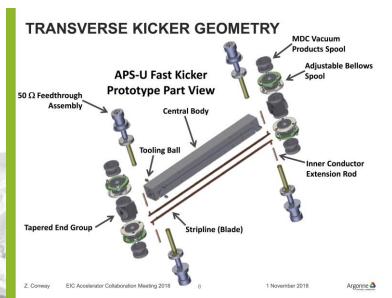


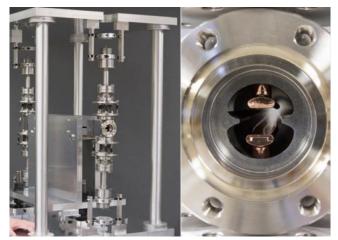
Table 2: JLEIC electron ring transverse feedback

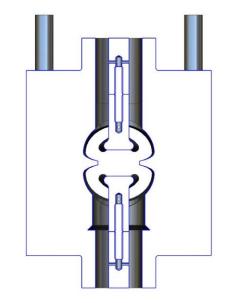
Table 1: JLEIC electron ring parameters

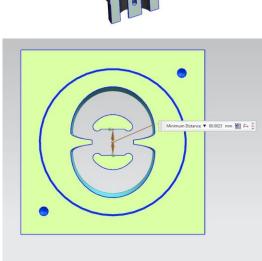
Parameter description	Symbol	Value
Beam energy	E_0	3 GeV
Beam current	I_0	3 A
Nominal RF frequency	$f_{ m RF}$	$476.3~\mathrm{MHz}$
Harmonic number	h	3712
Revolution frequency	$f_{ m rev}$	$128.31~\mathrm{kHz}$
Radiation damping time, transverse	$ au_{ m rad}$	474 ms
Vertical emittance	arepsilon	613 pm rad
Vertical beta function, pickup	eta_P	13 m
Vertical beta function, kicker	eta_K	13 m
Resistive wall growth time	$ au_{ m ol}$	$1.6~\mathrm{ms}$

TERRO I	
JLEIC ele Parameter description	Value
Optimal closed-loop damping time	1.6 ms (205 turns)
Fastest achievable damping time	29 μs (3.7 turns)
Residual dipole motion at optimal damping	28 μm
$\frac{1}{\text{amping ti}}$ Fastest achievable damping time Residual dipole motion at optimal damping Feedback gain for optimal damping Power requirement with 0.5 mm excitation, 10 kΩ kicker R_{\perp}	$1.5~\mu\mathrm{rad}\mathrm{mm}^{-1}$
$_{\mathrm{imal\ dam_{I}}}$ Power requirement with 0.5 mm excitation, 10 k Ω kicker R_{\perp}	$250~\mathrm{W}$
th 0.5 mm Power requirement at 5 GeV	$700~\mathrm{W}$
5 GeV 700 W	10.00

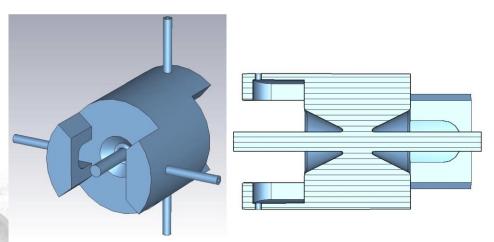

PEP-II:


- Transverse kickers ~ 3.4 kV per kicker.
- W. Barry et al, PAC'95 (based on ALS design) .
- Longitudinal kickers
- P. McIntosh et al, PAC'03, 1.071 GHz with BW = 238 MHz (based on DAFNE design)


^{*&}quot;Transverse bunch-by-bunch options for JLEIC electron ring", preliminary report, Dmitry Teytelman, July 2019


R&D Highlights: Transverse kicker

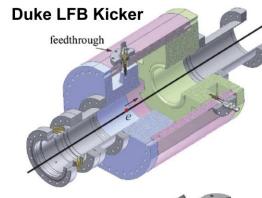
- Based on APS-U injector stripline design
 - Better thermal properties compared to PEP-II style
 - More efficient, more robust feedthroughs
 - Tested with beam at ANL
- Scaled to JLEIC frequency/aperture
- Matching sections need to be re-optimized
- HOMs need to be checked

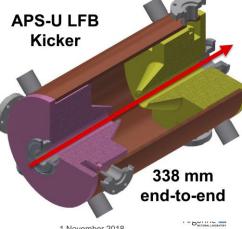


"Preliminary Test Results of a Prototype Fast Kicker for APS MBA Upgrade," C. Yao et al., NA-PAC2016, WEPOB24, Pg. 950 (2016)

R&D Highlights: Longitudinal Feedback Kickers

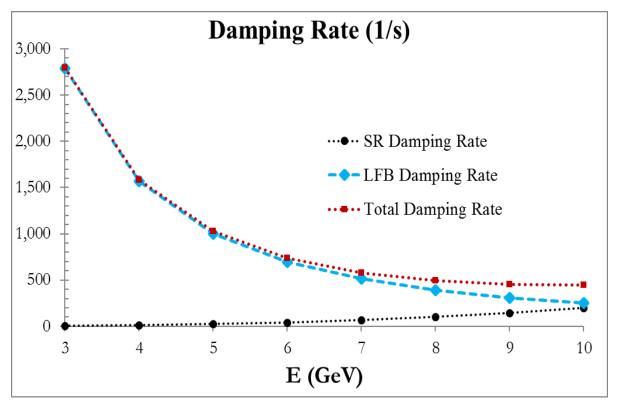
- ANL is developing a 1.027 GHz, 59 MHz bandwidth, R/Q = V2/2P = 160 □, longitudinal feedback kicker for the APS-U electron storage ring. The APS-U longitudinal feedback system is designed to deliver > 4 kV kick distributed over two longitudinal feedback kickers.
- The APS-U storage ring will operate with a 200 mA 6 GeV electron beam. This beam current is much less than the expected JLEIC electron storage ring operating level of 3 A.


LFB KICKER CONCEPT


Background

- Chose a waveguide over-damped resonator for the APS-U longitudinal feedback (LFB) kicker:
 - Used at ALS, BESSY-II, DIAMOND, Duke, DAPNE, HIGS, HLS-II, KEK-B, PEP-II, etc,
 - High shunt impedance,
 - Low HOM shunt impedances,
 - High power handling, and
 - Straightforward fabrication.
- APS-U LFB kicker is much more reentrant for high shunt impedance.

W.Z. Wu et al., NIMA, Vol. 632, # 1, 11 March 2011, Pg. 32-42


EIC Accelerator Collaboration Meeting 2018

A Waveguide Overloaded Cavity as Longitudinal Kicker for the DAFNE Bunch-by-bunch Feedback System," A. Gallo et al., International Workshop on Collective Effects and Impedance for B-Factories, Tsukuba, Japan, June 1995.

Total damping rate vs. energy

LFB: Longitudinal Feedback

LFB Kicker Total Voltage: 7kV

LFB phase resolution: 0.02 rad

Max LFB Gain: 3.5e5

R&D Highlights: Work left to do

- Refine e-ring impedance budget (ongoing)
- Scaling of transverse kicker, input matching, impedance analysis, HOM analysis
- Fabrication of prototype transverse kicker (outsource to industry?)
- Testing at JLab.
- Scaling of longitudinal kicker, HOM analysis
- Overall system specification for CDR

Issues & Concerns:

- Labor priority
- Support resource conflicts
- Uncertainty about site selection

Deliverables and Schedule

• Experimental deliverables have to be shifted by more than a year due to delay in system parameter

definition* and EM/ mechanical design

Task		FY'18			FY'19				FY'20			
		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
JLab: Provide e-ring parameters			\rightarrow	✓	✓	✓	✓	✓				
ANL: Preliminary model of transverse kicker			→	✓	\rightarrow	\rightarrow	\rightarrow	✓				
JLab: Impedance and instability studies				✓	✓	✓	✓	✓	+	+	+	+
ANL: Mechanical design of transverse kicker				\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	+			
ANL: preliminary design of longitudinal kicker				\rightarrow	✓	\rightarrow	\rightarrow	\rightarrow	?			
JLab: Survey of industrially available digital electronics					✓	✓	✓	✓				
ANL: Drawings of transverse kicker/impedance estimates					\rightarrow	\rightarrow	\rightarrow	\rightarrow	?			
JLab: Ring impedances, instabilities and requirements						\rightarrow	✓	✓	+	+	+	+
ANL: Tolerance study trans.; Preliminary model of long. kicker						\rightarrow	\rightarrow	✓	\rightarrow			14.
JLab: Calculate current limit with feedback							✓	✓	+	124		
ANL: HOM calcs. Parts ordered for transverse kicker prototype							\rightarrow	\rightarrow	\rightarrow		9/	18 3
JLab: study effect of FB on polarization lifetime								\rightarrow	\rightarrow	- 6		10 1000
ANL: Assembly of kicker, measure, ship to JLab								\rightarrow	→			

^{*}Prior FY17 project "Fast Feedback System and Kicker Design" just ended in Q4 FY19 (incl. subcontract to DimiTel).

Budget

• JLab

	FY'18-FY'19	Totals
a) Funds allocated	\$224,000	\$224,000
b) Actual costs to date	\$14,000	\$14,000

ANL/BNL

	FY'18-FY'19	Totals
a) Funds allocated	\$200,000	\$200,000
b) Actual costs to date	\$300	\$300

Back up

FOA proposal

Title:

High Bandwidth Beam Feedback Systems for a High Luminosity EIC

Institution:

Argonne National Laboratory

Lead Principal Investigator (PI):

Dr. Zachary Conway

JLab Co-Pl

Bob Rimmer

Other personnel:

Dr. H.-Ulrich Wienands

Collaborative Proposal Information								
Names Institution Year 1 Year 2 Budget Budget								
Lead PI	Zachary Conway	Argonne national Lab	\$400,000	\$400,000				
Co-PI	Robert Rimmer	Jefferson Lab	\$227,464	\$228,079				
Total	Total \$627,464 \$628,079							

requested

Funded \$200k \$218k \$418

2018 milestones (funded)

- Q3 FY2018 Milestones:
- (JLAB) Table of JLEIC electron storage ring parameters; and
- (ANL) Preliminary model of the transverse kicker for single axis beam deflection.
- Q4 FY2018 Milestones:
- (JLAB) JLEIC storage ring preliminary impedance estimate;
- (JLAB) JLEIC electron storage ring collective instability feedback requirements;
- (ANL) Mechanical tolerance study for the transverse fast kicker; and
- (ANL) Preliminary model of the longitudinal kicker.

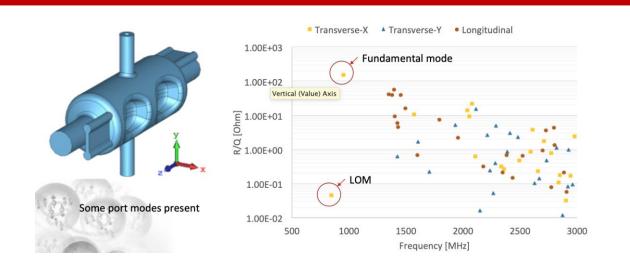
2019 milestones (funded)

Q1 FY2019 Milestones:

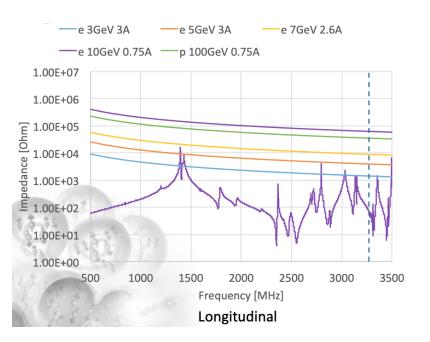
- (ANL) Drawings suitable for fabrication of the transverse kicker;
- (JLAB) Initial results from the survey of industrially available digital electronics; and
- (ANL) First order estimates of the monopole impedance spectrum for the transverse and longitudinal kickers

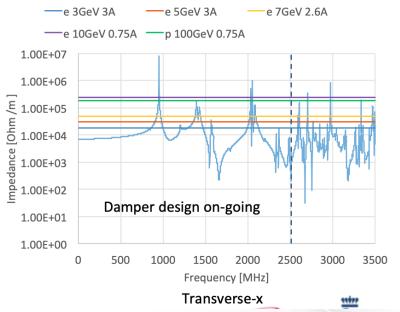
Q2 FY2019 Milestones:

- (JLAB) JLEIC storage ring impedance;
- (JLAB) JLEIC electron storage ring collective instability feedback requirements;
- (ANL) Mechanical tolerance study for the transverse fast kicker; and
- (ANL) Preliminary model of the longitudinal kicker.


Q3 FY2019 Milestones:

- (ANL) All parts required for the transverse fast kicker ordered and first parts received;
- · (JLAB) Calculation of the JLEIC beam current limit with transverse and longitudinal feedback; and
- (ANL) Calculation results for the dipole mode shunt impedance and loaded quality factors for the transverse and longitudinal kickers up to 3 GHz.


Q4 FY2019 Milestones:


- (JLAB) Calculation of the effects of transverse and longitudinal feedback systems on the lifetime of the electron beam polarization;
- (ANL) Final assembly of the transverse kicker;
- (ANL) Measurement of the transverse kicker impedance with a network analyzer;
- (ANL) Leak check of the transverse fast kicker; and
- (ANL) Shipment of the longitudinal fast kicker components to JLAB.

Crab Cavity and Coupled Bunch Instability (work in progress)

(HyeKyoung Park)

