Design and Prototyping of Superconducting EIC – Interaction Region Magnets

> Nuclear Physics Accelerator R&D PI Meeting Peter Wanderer, BNL November 13-14, 2018

Electron Ion Collider – eRHIC

BROOKHAVEN

Acknowledgements

- Brett Parker
- Mike Anerella
- Jesse Schmalzle
- DOE OHEP LARP R&D, ILC R&D

Electron Ion Collider – eRHIC

Design and Prototyping of Superconducting EIC – Interaction Region Magnets

Funding Source	PI	R&D Report Priority #	R&D Panel Priority Rating	Total \$
FY17	P. Wanderer, M. Anerella	28	Hi-C	\$210,000

 The panel identified the validation of magnet designs associated with high-acceptance interaction points by prototyping as a key area that is common for all EIC concepts (p. 41)

Outline

- Superconducting Quadrupole for EIC Insertion Region (IR)
- FY17 Task and Status
- Conclusions and Outlook

Electron Ion Collider. - eRHIC

Superconducting Quad for EIC IR (1)

- EIC (Generic) Requirements for IR Magnets:
 - Hadron beam → superconducting (high energy)
 - Electron beam \rightarrow low field (avoid synchrotron rad.)
 - Beams near the collision point are very close to one another \rightarrow novel magnets
- Approach:
 - Proof of principal magnets useful to both labs. Most difficult magnet is Q1PF (first quad on proton forward side of IR), which needs Nb₃Sn coils. (NbTi inadequate)

Superconducting Quad for EIC IR (2)

- Value Engineering:
 - Use existing hardware, specifically Nb₃Sn coils from the OHEP LARP program
 - Use novel concept: "Active Shielding," from OHEP ILC R&D program. Shield quad has opposite gradient and larger radius than main quad.
- Engineering Challenge:
 - much less radial space available for the structure that supports the quad coils against Lorentz forces.

eRHIC and JLEIC: Fast Track R&D

- Use existing Nb₃Sn coils (from LARP work) with a new active shield to prove out Q1PF concept.
- Main challenge is limited space for mechanical structure.

Fast Track R&D Magnet: Design Summary

Fast Track Magnet 3D Mechanical Assembly.

Task Using FY17 Funding

- Response to Engineering Challenge:
 - Assemble 15 cm-long LARP coil sections, available from a previous engineering test.
 - Instrument with strain gauges.
 - Assemble at high preload by pressurizing "bladders" made from stainless steel.
 - Cool to 77K (liquid nitrogen).
 - Measure preload.

Status: Nearly Complete

Electron Ion Collider – eRHIC

Costs and Schedule

	FY10+FY11	FY12+FY13	FY14+FY15	FY16+FY17	Totals
a) Funds allocated				210,000	210,000
b) Actual costs to date				202,566	202,566

Activity	Start Date	End Date
Design and purchase of an initial set of components		September 2017 √
Complete Assembly and Test		September 2018

11

• Assembly and test – anticipate completion November 2018

Electron Ion Collider - eRHIC

Conclusion and Outlook

- Test will be completed by 11/30/18.
- Test will yield engineering data needed for final design of High Gradient Actively Shielded Quadrupole project (funded via FY18 FOA)
 - Schedule: fabrication complete 8/19; test complete 12/19.