Beam Simulations & Code Benchmarking (FY-2017 Project)

Brahim Mustapha Physics Division, ANL

Contributors: J. Martinez (ANL/IIT)

DOE-NP EIC Accelerator R&D PI Meeting November 13-14, 2018, Gaithersburg, MD

Outline

□ Overview of ANL's Contribution to EIC R&D

□ Highlights from Previous Years Work (FY10-16)

□ New FY-17 Project: Beam Simulations & Code Benchmarking

□ Motivations & Goals

□ Framework & Progress

□ Summary

Overview of ANL's Contribution to EIC R&D

Goal of the early work (FY10-14): Development of the Ion Accelerator Complex for MEIC/JLEIC

□ Accomplishments FY10-14: Design of the Ion Complex (Baseline – 2012)

- Preliminary Linac Design
- Pre-Booster Design
- Beam injection and formation scheme in the ion complex
- ❑ COSY developments for space charge and longitudinal dynamics
- Goal of the later work (FY15-16): Design and Simulations of the JLEIC Ion Injector Linac

Accomplishments FY15-16: Injector Linac Design & Simulations
 Complete conceptual design of the JLEIC ion injector linac
 Start-to-end simulations in the linac

Budget Summary & Expenditures Over the Years

	FY10+ FY11	FY12+ FY13	FY14+ FY15	FY16+FY17	Total
Funds allocated	0k+440k	100k+98k	50k+105k	100k+0k	\$893k
Actual costs to date	0k+316.8k	142.2k+115.2k	53.7k+119.1k	99.2k+46.8k	\$893k

Highlights from Early Years (FY10-14)

Beam Simulations & Code Benchmarking

DOE-NP EIC R&D PI Meeting, Nov 13-14, 2018

Original Linac Design (2012) – MEIC/JLEIC Baseline

- Warm front-end up to ~ 5 MeV/u for all ions
- SC QWR section up to 13 MeV/u for Pb ions
- A stripper for heavy ions for more effective acceleration: Pb $^{28+ \rightarrow 67+}$
- SC high-energy section (QWR + HWR) up to 280 MeV for protons and 100 MeV/u for Pb ions
- Total linac length of ~ 130 m with a total pulsed power of 560 kW (2012)
- A first version of the linac design in 2011 included 3 types of cavities (QWR, HWR and DSR) with a total length of 150 m

Beam Simulations & Code Benchmarking

Pre-Booster Design – Original MEIC Baseline (2012)

☐ Figure-8 design to preserve beam polarization

Below transition energy: 3 GeV for protons, 670 MeV/u for Pb ions

234 m circumference with adequate space for insertions: e-cooling, RF system, injection, extraction, correction and collimation

Beam Simulations & Code Benchmarking

Polarized Proton Beam Formation in the MEIC Ion Complex

		Source	Linac	Pre-booster		Large Booster	Collider Ring
		ABPIS	At exit	At Injection	After boost	After boost	After boost
Charge status		H-	H-	H^+	H^+	H^+	H^{+}
Kinetic energy	MeV/u	~0	13.2	285	3000	20000	60000
γ and β				1.3 / 0.64	4.2 / 0.97	22.3 / 1	64.9 / 1
Pulse current	mA	2	2	2			
Pulse length	ms	0.5	0.5	0.22			
Charge per pulse	μC	1	1	0.44			
Ions per pulse	10^{12}	3.05	3.05	2.75			
Pulses				1			
Efficiency				0.9			
Total stored ions	10^{12}			2.52	2.52	2.52x 5	2.52x5
Stored current	А			0.33	0.5	0.5	0.5

*δ*p/p=1.5%

 $\delta p/p{=}{-}1.5\%$ Beam Simulations & Code Benchmarking

DOE-NP EIC R&D PI Meeting, Nov 13-14, 2018

Publications ...

- "Design Studies of Pre-Boosters of Different Circumference for an Electron Ion Collider at JLab", S. Abeyratne, B. Erdelyi, S.L. Manikonda, PAC-2011, New York.
- "An accumulator/Pre-Booster for the Medium-Energy Electron Ion Collider at JLab", B. Erdelyi, S. Abeyratne, Y.S. Derbenev, G.A. Krafft, Y. Zhang, S.L. Manikonda, P.N. Ostroumov, PAC-2011, New York.
- "Formation of Beams in the Ion Accelerator Complex of the Medium Energy Electron Ion Collider Facility at JLab", S.L. Manikonda, P.N. Ostroumov, B. Erdelyi, IPAC-12, New Orleans.
- "An improved transfer map approach to longitudinal beam dynamics", B. Erdelyi, S. Manikonda, P.N. Ostroumov, Nuclear Instruments and Methods in Physics Research A694 (2012) 147–156.

Beam Simulations & Code Benchmarking

More Recent Work (FY15-16)

Beam Simulations & Code Benchmarking

Conceptual Design for the JLEIC Ion Injector Linac

□Two RFQs: One for light ions (A/q ~ 2) and one for heavy ions (A/q ~ 7)
 ○ Different emittances and voltages for polarized light ions and heavy ions
 □Separate LEBTs and MEBTs for light and heavy ions
 □RT Structure: IH-DTL with FODO Focusing Lattice
 ○ FODO focusing → Significantly better beam dynamics
 □SRF Linac made of QWR and HWR, based on recent ANL developments
 □Stripper section for heavy ions
 □Pulsed Linac: up to 10 Hz repetition rate and ~ 0.5 ms pulse length

RT Section to ~ 5 MeV/u – followed by SRF Linac

□ RT front-end up to ~ 5 MeV/u → Most efficient and cost-effective option for pulsed linacs, ex: CERN Lead linac and BNL EBIS injector

□ SRF Linac to full energy

- Large acceptance & more flexibility for light and heavy ion beams
- More compact and cost-effective than the full RT option (Ref. P. Ostroumov, MEIC meeting 2015; R. York, JLEIC meeting 2016)
- Take advantage of state-of-the-art performance of QWRs and HWRs
- Pulsed SRF cavities can run higher voltage \rightarrow Shorter linac
- Pulsed RF power is not as expensive as CW

Two Separate RFQs: Design Parameters

- ✓ Light-Ion RFQ is designed for polarized beams with 2π mm mrad normalized transverse emittance
- Heavy-Ion RFQ is designed for ion with $A/q \leq 7$ with **0.5** π mm mrad normalized transverse emittance

Light ion Heavy ion Parameter Units MHz 100 Frequency 15 - 500 Energy range 10 - 500 keV/u 2 Highest - A/Q 7 3.0 Length 5.6 m Average radius 3.7 7.0 mm Voltage 70 103 kV Transmission 99 99 % Quality factor 6600 7200 RF power consumption 210 kW 120 (structure with windows) Output longitudinal 4.5 π keV/u ns 4.9 emittance (Norm., 90%)

IH – DTL with FODO Focusing

✓ 3 Tanks – 20 Quadrupoles in FODO arrangements

- ✓ Energy gain: 0.5 4.9 MeV/u = 30.5 MeV
- ✓ Total length: 4.3 + 3.5 + 3.4 m = 11.2 m
- ✓ Real-estate accelerating gradient: 2.72 MV/m
- ✓ RF Power losses: 280 + 400 + 620 = 1.3 MW

B. Mustapha THE UNIVERSITY OF CHICAGO CHICAGO CHICAGO Beam Simulations & Code Benchmarking

DOE-NP EIC R&D PI Meeting, Nov 13-14, 2018

SRF Linac & Stripper Section 280 MeV protons β_G=0.15 100 MeV/u Pb Stripper (12C) **B**_G=0.3 100 MHz 200 MHz HWR HWR QWR OWR HWR HWR HWR HWR HWR HWR HWR

Stripping at 13 MeV/u to get Pb⁶⁷⁺ for Injection to the Booster

- Pb @ 13 MeV/u: 30+ → 67+, ~ 20% stripping efficiency
- SRF section made of 3 QWR modules and 9 HWR modules
- Each module is made of 7 cavities and 4 superconducting solenoids
- QWR and HWR operated at 4.7 MV

> One type of HWR covers the whole velocity range, β : 0.15 – 0.35

Beam Simulations & Code Benchmarking

SRF Section: QWR & HWR Design Parameters

Beam Simulations & Code Benchmarking

DOE-NP EIC R&D PI Meeting, Nov 13-14, 2018

Start-to-end Linac Simulations: Polarized Deuterons

No beam loss over the whole linac (10k particles) \rightarrow Avoid neutron activation

B. Mustapha THE UNIVERSITY OF CHICAGO Beam Simulations & Code Benchmarking

Start-to-end Linac Simulations: Lead ion beam

B. Mustapha THE UNIVERSITY OF Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. CHICAGO

Beam Simulations & Code Benchmarking

Publications ...

- "Pulsed SC Ion Linac as an Injector to Booster of Electron Ion Collider", P.N. Ostroumov, Z.A. Conway, B. Mustapha, B. Erdelyi, Proc. of SRF-2015, Vancouver, Canada, September 2015
- "Design and Beam Dynamics Studies of a Multi-Ion Linac Injector for the JLEIC Ion Complex", P. Ostroumov et al, Proceedings of Hadron Beams 2016 Workshop (HB-2016), Malmo, Sweden, July 3-8, 2016.
- "Design of the Room-Temperature Front-End for a Multi-Ion Linac Injector", A. Plastun, B. Mustapha, Z. Conway and P. Ostroumov, Proceedings of NAPAC-2016, October 9-14, Chicago, Illinois.
- "Design of the Multi-Ion Injector Linac for JLEIC", B. Mustapha, Z. Conway, M. Kelly, A. Plastun and P. Ostroumov, Proceedings of the HIAT-2018 Conference, October 22-26, Lanzhou, China.

New FY-17 Project: Beam Simulation & Benchmarking

Beam Simulations & Code Benchmarking

Motivations & Goals

- Use and build upon the recent simulation features added to the COSY and TRACK code specifically developed for application to the EIC
- These tools differ from the software being used at both JLab and BNL and could be effectively used for independent code-code and code-data benchmarking
- These tools include
 - Longitudinal beam dynamics for beam formation schemes
 - Space charge effects and nonlinear beam dynamics
 - Spin tracking for electrons and light ions (built-in in COSY)
- The developed beam simulation tools could be used for either the JLEIC or eRHIC concepts, for either electron or ion beams.
- Priority rows # 4, 12 & 37 in Jones Report

B. Mustapha The UNIVERSITY OF CHICAGO Beam Simulations & Code Benchmarking

Budget Summary & Expenditures Over the Years

	FY10+ FY11	FY12+ FY13	FY14+ FY15	FY16+FY17	Total
Funds allocated				50k	\$50k
Actual costs to date				45k	\$45k

✓ FY-17 Milestones: Framework is alternative design for JLEIC ion complex

	Milestones
Q1FY17	Development of accelerator lattice conversion tools between codes: MADX, COSY, Zgoubi, TRACK
Q2FY17	Benchmarking beam optics in e-ring as large ion booster
Q3FY17	Spin dynamics in octagonal pre-booster and benchmarking
Q4FY17	Spin dynamics in the ion injector linac and benchmarking

Alternative Design Approach for JLEIC Ion Complex

ANL LDRD Project

- The Electron Storage Ring and Ion Collider Ring are stacked vertically
- Ion injection from the booster (e-ring) to the ion collider ring is a vertical bend

B. Mustapha THE UNIVERSITY OF CHICAGO
CHICAGO
Actional Laboratory is a CHICAGO
CHICAGO Beam Simulations & Code Benchmarking

E-Ring As Large Booster for the lons -Added Accelerating / RF Sections for lons

Ion RF sections were inserted in the straight sections, across from electron RF
 Proton beam optics studied at the injection energy of 3 GeV

B. Mustapha THE UNIVERSITY OF CHICAGO
Us. Department of US. Department of Energy Boardon. US Beam Simulations & Code Benchmarking

Benchmarking beam optics in e-ring: COSY vs. MADX

3 GeV proton beam optics in MADX

Superposition: COSY in blue, MADX in red

✓ Excellent agreement between the two codes …

B. Mustapha THE UNIVERSITY OF CHICAGO CHICAGO CHICAGO CHICAGO CHICAGO Beam Simulations & Code Benchmarking

A More Compact Booster Ring \rightarrow Pre-Booster

ltem / Parameter	Original	New
N. of 15° Dipoles	36	24
N. of Quads	95	40
Total N. of Magnets	131	64
Total Length	234	120

At 3 GeV, figure-8 is not required, spin correction with Siberian snakes possible

Design Parameters

Parameter	Octagonal
Circumference, m	120
Arc length, m	6.7
Straight section length, m	8.3
Maximum β _x	15.3
Maximum β _y	21.0
Maximum dispersion	4.2
β_x at injection	6.0
Normalized dispersion at	1.71
injection: D/v β _x	
Tune in X	3.01
Tune in Y	1.18
Gamma transition	4.7
Gamma at extraction (3 GeV)	4.22
Momentum compaction factor	0.045
Number of quadrupoles	40
Quadrupole length, m	0.4
Quadrupole half aperture, cm	5
Maximum quadrupole field, T	1.5
Number of dipoles	24
Dipole bend radius, m	8
Dipole angle, deg	15
Dipole full gap, cm	5
Maximum dipole field	1.6

DOE-NP EIC R&D PI Meeting, Nov 13-14, 2018

Argonne 🚽

Spin Dynamics in Pre-Booster: COSY vs. Zgoubi

Intrinsic resonances (proton)

Imperfection resonances (proton)

Intrinsic : COSY vs. Zgoubi

- ✓ Good overall agreement between COSY and Zgoubi
- ✓ No resonances observed for deuterons, first one expected at ~ 5.6 GeV/u
- ✓ Possible spin correction schemes for protons are listed in table below

Option	~ 5 Imperfection	~ 2 Strong Intrinsic	~ 1 Intrinsic	~ 8 Weak Intrinsic
А	Orbit corrections	Rf Dipole	Rf Dipole	Nothing/Pulsed Quads
В	5% Siberian Snake	Rf Dipole	Rf Dipole	Nothing/Pulsed Quads
С	Orbit Correction	Pulsed Quads	Pulsed Quads	Nothing/Pulsed Quads
D	5% Siberian Snake	Pulsed Quads	Pulsed Quads	Nothing/Pulsed Quads
Е	40% Siberian Snake	40% Siberian Snake	40% Siberian Snake	40% Siberian Snake

B. Mustapha

Beam Simulations & Code Benchmarking

Spin Dynamics in the Injector Linac

- ✓ Quadrupole focusing in RT section \rightarrow Transverse spin is more favorable
- \checkmark Solenoid focusing in SRF section \rightarrow Longitudinal spin is more favorable
- ✓ We investigated both options and possible spin correction schemes for both protons and deuterons

Proton Spin Dynamics in SRF Section

THE UNIVERSITY OF CHICAGO CONCENTRATION Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Argonne 🐴

Deuteron Spin Dynamics in SRF Section

B. Mustapha

THE UNIVERSITY OF CHICAGO COLORATIVENT OF Argonne National Laboratory is a U.S. Department of Energy laboratory managed by Uchicago Argonne, LLC.

Beam Simulations & Code Benchmarking

Possible Spin Correction Schemes in the Linac

- ✓ A longitudinal spin orientation will be preserved in solenoid focusing but will require spin rotators before and after the SRF section \rightarrow more space
- ✓ A vertical (transverse) spin orientation will not be preserved but can be restored at the end of the linac using an 8 T 30 cm long solenoid for protons, but will require a 1.4 m long solenoid for deuterons
- ✓ Another potential scheme (not yet investigated) is to alternate the solenoid field throughout the linac which may results in only a residual spin rotation that could be corrected with a much shorter solenoid
- ✓Zgoubi's results agree well with analytical estimates

✓ Benchmarking with COSY is underway ...

Publications ...

- "An Alternative Approach for the JLEIC Ion Accelerator Complex", B. Mustapha, P. Ostroumov, A. Plastun, Z. Conway, V. Morozov, Y. Derbenev, F. Lin and Y. Zhang, Proceedings of NAPAC-2016, October 9-14, 2016, Chicago, IL.
- "Adapting the JLEIC Electron Ring for Ion Acceleration", B. Mustapha, J. Martinez Marin, Z. Conway, P. Ostroumov, F. Lin, V. Morozov, Y. Derbenev and Y. Zhang, Proceedings of IPAC-2017, May 14-19, 2017, Copenhagen, Denmark.
- "Beam Formation in the Alternative JLEIC Ion Complex", B. Mustapha et al, Proceedings of IPAC-18, April 29 – May 4, 2018, Vancouver, Canada
- "Spin Dynamics in the JLEIC Alternative Pre-booster Ring", J. Martinez and B. Mustapha, Proceedings of IPAC-18, April 29 – May 4, 2018, Vancouver, Canada

Summary

- Significant progress has been made in beam simulations and code benchmarking under the framework of the alternative design approach for the JLEIC ion complex
- ❑ We propose to continue the development and benchmarking of these simulation tools and make them available for the simulation of both the eRHIC and JLEIC concepts of the EIC ...

