Crab Crossing Design and Simulations

PI: Vasiliy Morozov

FY'17 DoE Accelerator R&D Additional Funding Award

2018 NP Accelerator R&D PI Exchange Meeting

November 13-14, 2018

Outline

- Crab crossing design and simulation project
- Motivation
- Crab crossing parameters and simulation setup
 - -Optical parameters
 - -Crabbing system setup
 - -Cavity turn on time
 - -Cavity multipoles
 - -Amplitude and phase noise
- Higher-order modes and coupled bunch instabilities
- Beam-beam effect

Description

-Investigate higher-order mode and impedance requirements for the engineering design of a crab cavity

- Status
 - -Completed
- Main goal
 - -Specify higher-order mode and impedance requirements for ion crab cavities
- Supported by JLab's Additional DoE NP Accelerator R&D funding
- The project's funding is not continued by the FY'18 NP Accelerator R&D FOA. However, two funded FY'18 projects benefit from this project's results
 - -Crab Cavity Operation in a Hadron Ring
 - -Development and test of simulation tools for EIC beam-beam interaction

Budget

	FY'16-FY'17	Totals
a) Funds allocated	\$58,000	\$58,000
b) Actual costs to date	\$57,379	\$57,379

Deliverables and schedule

Task	FY'17 Q1	FY'17 Q2	FY'17 Q3	FY'17 Q4
Higher-order mode and impedance specifications	×	×	×	×

• The project corresponds to Line 1, "Crab cavity operation in a hadron ring", Priority High-A of the Jones' Panel report

4

Crossing Angle

- The beams in an EIC must collide at a crossing angle to
 - -Allow forward ion detection
 - -Improve momentum resolution for hadrons within a few degrees of the ion beam direction
 - -Eliminate parasitic collisions of closely-spaced bunches
 - -Provide beam separation in the IR to place independent electron and ion magnets
 - -Reduce detector background by shortening the common section of the detector beam pipe
- Geometric luminosity reduction factor and Piwinski angle:

• In case of JLEIC with a 50 mrad crossing angle, the reduction factor $R_{\Theta} \approx 0.12$

Crab Crossing

• Restores effective head-on collisions and prevents luminosity loss

• Required crab kick

$$V_{crab} = \frac{cE_b \tan(\varphi_{cross}/2)}{e\omega\sqrt{\beta_{crab}\beta^*}\sin(\Psi_{CC\to IP})}$$

JLEIC Crab Crossing Parameters

• Required voltage may be reduced by optimizing the ring optics

Parameter	Electro	on ring	lon ring		Units	
Energy	5	10	20	60	100	GeV
Frequency	952.6				MHz	
Crossing angle	50				mrad	
β_x^*	0.1				m	
β_x^{crab}	200		363			m
Crab voltage	1.4	2.8	4.2	12.5	20.8	MV

Initial Ion Colldier Optics Setup

- Crab cavities located near horizontal chromatic sextupoles
- Observe emittance growth due to crabbed beam going through vertical chromatic sextupoles

Optimized Ion Collider Optics

Chromaticity Compensation Block with Space for Crab Cavities

- Initial simulations assumed thin crab cavities
- Design of realistic crab sections in progress
- 10 m reserved for crab cavities
- Optics and space can be optimized for crab crossing

10

Crab Tilt Simulation

- Observe expected bunch tilt
- No significant impact on the dynamic aperture

Optimization of Crab Cavity Turn On Time

- Imperfect compensation of the crabbing kick seems to cause transverse-longitudinal coupling leading to correlated increase in the projected emittance
- Fast crab cavity turn-on excites betatron oscillations increasing uncorrelated beam emittance.
- A sufficiently slow turn-on (>500 turns) prevents uncorrelated emittance growth.

12

Impact of Crab Cavity Multipoles

- Transversely uniform crabbing kick
- No impact on the DA

- 1-cell, 3-cell, and squashed crab cavities
- Multipoles are simulated in CST Microwave Studio
- Multipoles do not impose a constraint on the DA

Sensitivity to Amplitude and Phase Noise

• Gaussian amplitude noise

• Gaussian phase noise

Higher-Order Modes and Coupled Bunch Instability

- An SRF cavity contains a number of resonant higher-order modes which may be excited by a
 passing beam
- 1 cm long bunches can potentially excite HOMs of up to ~3 GHz
- Oscillations at frequencies below the beam pipe cutoff frequency may get trapped and resonate long enough to interact with subsequent bunches driving bunch oscillations
- A beam consisting of *M* equally-spaced bunches can have a coupled-bunch oscillation mode μ where $0 \le \mu < M$ and $2\pi\mu/M$ is the oscillation phase shift between adjacent bunches
- A resonant build-up of coupled bunch oscillations may lead to a coupled bunch instability
- We evaluate the growth time of different coupled bunched modes based on the beam spectrum and the cavity HOM impedance

Impedance of Longitudinal HOMs

 2- and 3-cell crab cavities with coaxial couplers

• Impedance of longitudinal HOMs

• Narrow-band impedance

$$Z_{\parallel}(\omega) = \sum_{k} \frac{R_{k}}{1 + iQ_{k} \left(\frac{\omega_{k}}{\omega} - \frac{\omega}{\omega_{k}}\right)}$$

 R_k , Q_k , and ω_k are obtained from a cavity simulation

• The beam frequency spectrum given by $\omega_{p,\mu} = (pM + \mu)\omega_0 + \omega_s$ is folded with the real part of the longitudinal impedance to evaluate the coupled bunch instability growth times

$$\tau_{\parallel}^{-1} = \frac{I_b \omega_0^2 \eta}{6(L/2\pi R)^3 2\pi \beta^2 (E/e) \omega_s} \sum_p \frac{Re\{Z_{\parallel}(\omega_p)\}}{\omega_p/\omega_0} \frac{h_a(\omega_p)}{S_a}$$

Coupled Bunch Instability Growth Rate

• Determined modes requiring HOM damping down to the level where they can be handled the Landau damping and/or a feedback system

Mode	μ	p	Beam $f_{\mu,p}$ (MHz)	HOM f (MHz)	
2-cell cavity					
1	3118	2	1384.17	1385	
2	3111	2	1383.2	1385	
3	115	6	2868.27	2866	
4	2910	2	1355.26	1357	
3-cell ca	vity				
1	2852	2	1347.2	1349	
2	2749	2	1332.89	1334	
3	2749	5	2759.02	2743	

Beam-Beam Effect

- Beam-beam may speed-up damping or cause additional resonances and needs to be studied
- Beam-beam model: multiple longitudinal slices interacting pair-wise according to Bassetti-Erskine
- Code implemented in Python and accounts for
 - -Bunch tilt
 - -Bunch offset
 - -Bunch length
- Reads and outputs SDDS files
- Easy interface to Elegant
 - -Accurate beam dynamics around the ring
 - -Access to all features of Elegant
- Has recently been benchmarked against analytic calculations

Summary

- JLEIC crabbing system has been setup
- Crabbing dynamics has been studied in simulations
- One must avoid strong non-linear fields in the crabbed region
- · Considered the effects of
 - -Cavity turn on time
 - -Cavity multipoles
 - -Amplitude and phase noise
- Developed specifications for HOM damping
- A small number of HOMs requires development of dedicated dampers
- Introduced the beam-beam effect into simulations
- The results and developed tools will be used in
 - -Crab Cavity Operation in a Hadron Ring
 - -Development and test of simulation tools for EIC beam-beam interaction

